

ELECTRICAL SAFETY TESTERS

www.kikusui.co.jp

Hipot and Insulation Resistance Testers Hipot Testers Insulation Resistance Testers Ground Bond Testers Leakage Current Testers

TOS SERIES

TOS SERIES SELECTION GUIDE

.

0.01MΩ - 9.99GΩ (DC25V - 1000V)

GPIB (RS-232C) (Timer)

TOS9213AS COP P.14,15

DCW 10kV/5mA

ELECTRICAL SAFETY TESTER

Hipot Tester with Insulation Resistance Test

Hipot Tester

D 430(16.93")W × 132(5.2")H × 370(14.57")Dmm W 19kg(41.89 lbs)

Standard

GPIB (RS-232C) (Timer

ACW 5kV/100mA(500VA)

IR

TOS9200 🖙 P.4 to 13

0.01MQ - 9.99GQ(DC25V - 1000V)

D 430(16.93'')W × 132(5.2'')H × 370(14.57'')Dmm D 430(16.93'')W × 132(5.2'')H × 400(15.75'')Dmm W 19kg(41.89 lbs)

DCW

W 13kg(41.89 lbs)

T0S9220 @ P.7 TOS9221

High-voltage scanner (4ch) for TOS9201/9200 * TOS9221 is equipped with a contact check function

USB (Timer

TOS5300 🖙 P.16 to 21

ACW 5kV/100mA(500VA)

.

D 430(16.93')W × 88(3.47')H × 370(14.57')Dmm W 6.5kg(14.33 lbs)

Standard type suitable for production and inspection lines

ACW 5kV/100mA(500VA)

6kV/10mA(50W)

TOS5301 P.16 to 21

USB Timer

T0S5302 P.16 to 21

TOS5101 • P.24,25 ACW 10kV/50mA(500VA) 10kV/5mA

D 430(16.93')W × 177(6.97')H × 370(14.57')Dmm W 21kg(46.3 lbs)

TOS5050A 🖙 P.26 to 28 ACW 5kV/100mA(500VA)

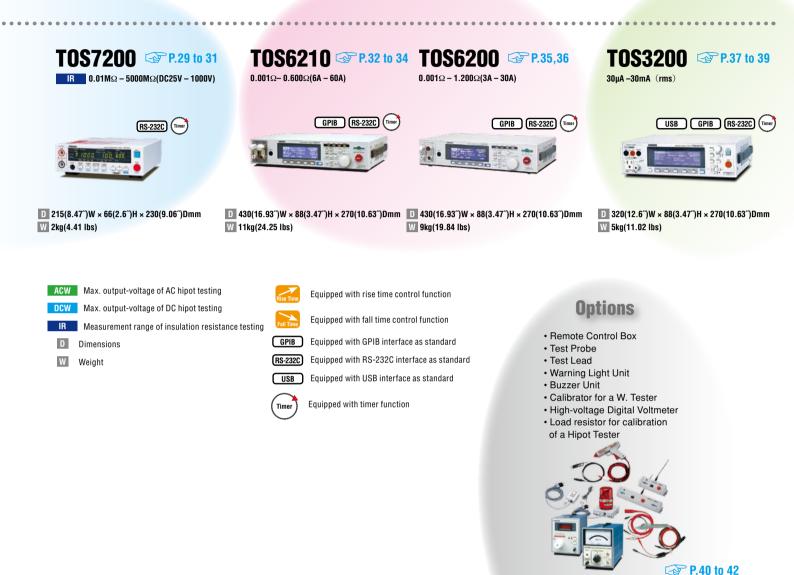
D 320(12.6')W × 132(5.2')H × 300(11.81')Dmm W 15kg(33.07 lbs)

Costsa

TOS8030 P.22,23

ACW 3kV/10mA(30VA) For simlified test

D 160(6.3')W × 132(5.2')H × 230(9.06')Dmm W 6kg(13.23 lbs)



Compact & low cost model

Insulation Resistance Tester

Ground Bond Tester

Leakage Current Tester

The Electrical Appliance & Material Safety Low (Japan), UL (U.S.A.), CSA (Canada), VDE (Germany) and BS (U.K) are some major examples of safety standards in use throughout the world that require the performing of hipot testing. For this reason, it is necessary to confirm for what portion of what standard testing is to be performed when purchasing a hipot tester. Although the 500 VA capacity hipot testers available from KIKUSUI can basically be applied to tests specified in all safety standards, we recommend that you consult with us prior to purchase in order to select the model that best matches your specific application.

For the withstanding test and the insulation resistance test of the EUT (Equipment Under Test) with turned on electricity.

Our Hipot Testers and Insulation Resistance Testers are designed to test the EUT (Equipment Under Test) with turned off electricity. In case the test requires the EUT (Equipment Under Test) with turned on electricity, please contact with our distributor or agent. P.28

Data Acquisition Software

(for 5050A)

Hipot Tester with Insulation Resistance Test

Perfect design for System Operation, introducing our top of the line of Hipot / Insulation Resistance Testers

TOS9200(ACW) TOS9201(ACW/DCW)

Capable of performing hipot and insulation testing in comply with safety standards, including IEC, EN, VDE, BS, UL,CSA, JIS and the Electrical Application and Material Safety Law (Japan)

The TOS9200 Series has been developed to meet a wide diversity of customer needs. Including the refinement and enforcement of Kikusui's former series, its specifications reflect the results of detailed study of our large database of user's requirements including special orders and modifying specifications. The TOS9200 Series consists of four products : the testers TOS9200 and TOS9201, and the high-voltage scanners TOS9221 and TOS9220.

The TOS9200 is equipped with AC hipot and insulation resistance testing functions, while the TOS9201 has a DC hipot testing function in addition to these two functions. The power block, a core component, employs a high-efficiency switching power supply and a switching amplifier based on PWM systems. These features realize high power and enhanced stability, as well as reducing the size and weight of the unit. When combined with the ground bond tester TOS6200, the TOS9200 Series integrates three or four types of tests in a single process.

Furthermore, when used together with the high-voltage scanner TOS9220/9221 (equipped with a contact check function), the tester is capable of automatically checking test points for up to 16 channels, thereby facilitating a safe, reliable automatic testing system.

GPIB RS-232C DRIVERS

- Rise-time control function
- Fall-time control function
- Offset cancel function
- Measured-value hold function
- Output voltage monitoring function
- Memory function
- Program function
- Interlock function
- DC discharge function

Hipot Tester with Insulation Resistance Test

Basic performance

Three functions - AC hipot testing. DC hipot testing and insulation resistance testing

The TOS9200 can perform AC hipot tests and insulation resistance tests, while the TOS9201 can also conduct DC withstanding tests. Once connected to a device being tested, the TOS9201 executes an AC hipot test, DC hipot test, and insulation resistance testing in succession in one process.

AC hipot testing at 5 kV and 100 mA

Equipped with a high-efficiency switching power supply in its highvoltage power block, a PWM-based switching amplifier and a 500 VA high-voltage transformer, the TOS9200/TOS9201 realizes a maximum output of 5 kV/100 mA (continuous output for 30 minutes), or 2.5 times the output of Kikusui's former models. At a test voltage of 500 V or more and an upper current of 100 mA, or greater the tester instantaneously satisfies the requirements of a short-circuit current of 200 mA or more which is required by the IEC standard *. In addition, the tester ensures a load effects of 30% or less and the generation of a consistent 50 Hz/60 Hz test voltage free from the affect of the supply voltage. These features eliminate the need to readjust the output voltage once the test voltage is preset.

*Continuous outputs are impossible because the output is cut off if an overcurrent is detected.

DC hipot testing at 6 kV and a maximum output of 50 W

The TOS9201 permits DC hipot testing at up to 6 kV *. The tester is equipped with a stable, low-ripple DC/DC converter with a load factor of 1% or less.

*Maximum output of 50 W for up to 1 minute.

Insulation resistance testing at 25 V to 1000 V and 0.01 M Ω to 9.99 G Ω

The test voltage can be set to 25 V through 1000 V at a resolution

the test tenage can be		eagn reee r ara reeenanen
of 1 V. Insulation	Test voltage	Resistance measurement range
resistance covers a	25V	0.03 $M\Omega$ to 500 $M\Omega$
wide measurement	50V	0.05 $M\Omega$ to 1.00 $G\Omega$
range from 0.01 $M\Omega$ to	100V	0.10 $M\Omega$ to 2.00 $G\Omega$
9.99 GΩ *.	125V	0.13 $M\Omega$ to 2.50 $G\Omega$
A single unit of the	250V	0.25 $M\Omega$ to 5.00 $G\Omega$
TOS9200/9201 is	500V	0.50 M Ω to 9.99 G Ω
capable of handling	1000V	1.00 $M\Omega$ to 9.99 $G\Omega$

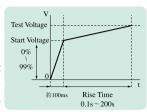
all test voltages required by JIS C 1302 1994 (Insulation Resistor Meter) and fully meets the JIS requirements.

*At a maximum rated current of 1 mA to 50 nA.

Enhanced measurement accuracy

The TOS9200/9201 is provided with a digital voltmeter for hipot testing at an accuracy of $\pm(1\% \text{ of reading} + 30 \text{ V})$ and another one for insulation resistance testing at an accuracy of ±(1% of reading + 1 V). Measured values are displayed not only during a test, but while a program is being executed. A digital ammeter with an accuracy of ±(3% of reading + 20 µA) is also provided for hipot testing. Kikusui's predecessors had the highest measurement resolution of about 1 mA, with an accuracy of ±5% of the upper cutoff current when it is set to 100 mA. In contrast, the digital ammeter allows the TOS9200/9201 to make measurements at an accuracy of $\pm(3\%$ of reading + 20 μ A), even if the upper current is set to 100 mA. The ammeter displays measured values while the program executes, as well as during an AC or DC hipot test.

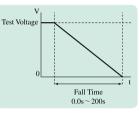
Туре	Display accuracy
Voltmeter for hipot testing	± (1% of reading + 30V)
Ammeter for hipot testing	\pm (3% of reading + 20µA)
Voltmeter for insulation resistance testing	± (1% of reading + 1V)
Insulation resistance meter	± (2% of reading)*
*At 1 µA< measured current ≤ 1 mA	



Hipot Tester with Insulation Resistance Test

Diverse functions

Rise-time control function


In AC hipot testing, DC hipot testing and insulation resistance testing, you can apply a voltage gradually to reach the test voltage, instead of applying the test voltage directly at the start of a test. The voltage increase time can be set to 0.1s through 99.9s at a resolution of 0.1s, and to 100s to 200s

at a resolution of 1s. The start voltage is also adjustable between 0% and 99% at a resolution of 1%.

Fall-time control function

In AC hipot testing, you can gradually decrease the test voltage after a PASS judgment. The voltage fall time is adjustable between 0.0s and 99.9s at a resolution of 0.1s, and between 100 s and 200s at a resolution of 1s.

Offset cancel function

In AC hipot tests that require high sensitivity and high voltages, currents flowing into the stray capacity of the test lead wire, jigs, and other components can cause measurement errors. The TOS9200/9201 features a function to cancel these offset currents.

Voltage hold function

During measurement, this function allows you to hold the value of the voltage measured at the end of an AC or DC hipot test, as long as the test results are being displayed. When combined with the rise-time control function, this function enables to observe the insulation breakdown voltage.

Maximum Leakage current and minimum resistance hold function

By selecting the "MIN/MAX Mode" in the measurement mode settings, you can hold the maximum current in hipot testing and the minimum resistance after the judgment wait time in insulation resistance testing. These values are shown on the tester's display. They can also be read back via interface (GPIB or RS-232C).

Output voltage monitoring function

When the output voltage deviates from $\pm(10\% \text{ of setting } + 50 \text{ V})$, the monitoring function activates to suspend the test, thus ensuring highly reliable testing.

Current detection response speed adjustment function

This function switches current detection response speeds for UPPER judgment by adjusting the integrated time constant of the current detection circuit. Three modes are available for the integrated time constant: SLOW (about 40 ms),MID (about 4 ms) and FAST (about 0.4 ms). SLOW mode is used in normal operations. MID and FAST modes are more effective in detecting a discharge occurring instantaneously or containing a large number of frequency components. They are also useful for hipot tests of test devices that insulation likely be breakdown, such as small electronic components.

Memory function

Up to 100 test conditions used in AC and DC hipot testing and insulation resistance testing, such as the test voltage, judgment value and test time, can be stored with a specific name. For instance, you can store the name of an applied safety standard and the destination of the product to be tested. If test conditions are preset, operator can recall relevant test conditions simply by entering the memory number. If you previously assigned a special name to each of these test conditions, the operator can check recalled test conditions by name. The memory function allows you to recall test conditions not only through the recall operation on the front panel, but also by the remote control.

[Storable test conditions]

	AC withstanding voltage testing	DC withstanding voltage testing	Insulation resistance testing
Test voltage	v	v	v
Test frequency	ب		
Lower cutoff value	~	~	~
ON/OFF of the lower judgment function	V	~	v
Upper cutoff value	~	~	~
ON/OFF of the upper judgment function			~
ON/OFF of the offset function	~		
Test time and ON/OFF of the timer function	~	~	4
Start voltage	~	~	
Voltage rise time	~	~	~
Voltage fall time	~		
Judgment wait time		~	~
Test voltage range	~		
SLOW/MID/FAST settings for the response filter	~		
FLOAT/GND of the LOW terminal	~	~	v
HIGH/LOW/OPEN settings for the scanner channel	~	~	4
ON/OFF of the contact check function	v	v	v

Program function

By coordinating test conditions stored in an AC hipot test, DC hipot test, and insulation resistance test, operator can sequentially run tests that comprise up to 100 steps. When used together with the ground bond tester TOS6200/6210, the TOS9200 Series permits continuous tests combining test conditions stored in the TOS6200, as well as on the TOS9200 itself. Sequential tests are possible, for example, on AC hipot, insulation resistance, DC hipot, and ground bond, in order. The TOS9200 Series stores up to 500 steps and 100 programs, which can be recalled through the recall operation on the front panel or by the remote control.

[Sample program]

St	tep 00	St	ep 01	St	ep 02	
mory	Interval	Memory	Interval	Memory	Interval	
W01	0.2s	DCW01	0.2s	IR01	0.2s	END
	mory		mory Interval Memory	mory Interval Memory Interval	mory Interval Memory Interval Memory	mory Interval Memory Interval Memory Interval

At Step 00, Step 01 and Step 02, memory ACW01 (AC hipot test), DCW (DC hipot test: TOS9201 only) and IR01 (insulation resistance test) are performed, receptively, in succession at 0.2-second intervals.

Hipot Tester with Insulation Resistance Test

Interfaces

REMOTE connector & SIGNAL I/O connector

The REMOTE connector on the front panel is used exclusively for Kikusui's options (remote control/ test probe). It allows start and stop

operations by remote control. The SIGNAL I/O connector on the rear panel permits operator to recall panel memory and program memory contents by remote control, as well as controlling start and stop operations. Seven different signals are output from the SIGNAL I/O connector through the open collector.

[SIGNAL I/O]

	<u>.</u>						
No.	Signal name	I/O	Details of signal				
1	PM0		LSB, LSD *1 [Pin Configuration for the				
2	PM1		LSD *1 SIGNAL I/O Connector]				
3	PM2		LSD *1				
4	PM3			0			
5	PM4		MSD *1 13121110987654321	/			
6	PM5		MSD *1 25 24 23 22 21 20 19 18 17 16 15 14 /				
7	PM6	-	MSD *1				
8	PM7	1	MSB, MSD *1				
9	STB	1	Input terminal for the strobe signal of the panel memory and				
			program memory				
10	MODE0		Selects a test mode *2				
11	MODE1		Selects a test mode *2				
12	N.C						
13	COM		Circuit common (chassis potential)				
14	H.V ON	0	ON during a test and an automatic test (AUTO) or while a voltage				
			remains between the output terminals				
15	TEST	0	ON during a test (except for voltage rise and voltage fall)				
16	PASS	0	ON during the time preset in the PASS HOLD settings when a				
			PASS judgement is made				
17	U FAUL	0	Continuously ON in an UPPER FAIL judgement. Continuously				
			ON in a CONTACT FAIL judgement with the scanner connected.				
18	L FAUL	0	Continuously ON in an LOWER FAIL judgement. Continuously				
			ON in a CONTACT FAIL judgement with the scanner connected.				
19	READY	0	ON during the READY status				
20	PROTECTION	0	ON when the PROTECTION function is activated				
21	START	1	Input terminal for the START signal				
22	STOP	1	Input terminal for the STOP signal				
23	ENABLE	1	Input terminal for the ENABLE signal for the START signal				
24	+24V		Output terminal for +24 V internal power, with a maximum output				
			current of 100 mA				
25	COM		Circuit common (chassis potential)				

 Input signal [Low active control input High-level input voltage: 11 V to 15 V / Low-level input voltage: 0 V to 4 V / Low-level input current: Maximum –5 mA / Input interval: Minimum 5 ms]

 Output signal [Open collector output (DC4.5V to 30V) / hipot: DC 30 V / Output saturation voltage : Approximately 1.1 V (25 °C) /Maximum output current : 400 mA (TOTAL)]

* The input signal circuit is pulled up to +12V. Therefore, opening the input terminal is equivalent to inputting a high-level signal.

н

*1 2-digit BCD low active input Signal input terminal for selection between the panel memory for ACW, DCW, and IR, and the program memory for AUTO Memory recall by latching this selection signal at the rise of the strobe signal 2 2-bit low active input Test mode ACW DCW IR AUTO

2 2-bit low active input	lest mode	
	MODE0	
	MODE1	

GPIB/RS-232C interface

A GPIB/RS-232C interface is provided as a standard feature to facilitate the remote control of all functions of the TOS9200/9201

н

except the POWER switch, the KEYLOCK function, and the program execution (AUTO) function.

RS-232C [Baud rate: 9600/19200/38400 bps/TOS6200/6210 interface (AUTO mode only): START/STOP control, test condition settings, reading of TOS6200/6210 measured values, and measurement results]

GPIB [Remote control of all functions except the POWER switch, the KEYLOCK function, and the program execution (AUTO) function/SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT0, C0, E1]

Peripheral devices

High-voltage scanner TOS9220/TOS9221

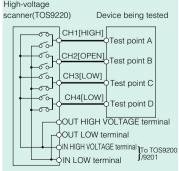
TOS9221 Front View (same for TOS9220)

TOS9221 TOS9220

The high-voltage scanner TOS9220/TOS9221 has a function that distributes the test voltage provided by the TOS9200/9201 to multiple test points. Up to four channels can be used for outputs on this scanner. Each channel can be set to one of the three electric potential modes – HIGH, LOW, or OPEN. Operator can conduct AC/DC hipot and insulation resistance tests on any of the four test points. Furthermore, up to four scanners can be connected to the tester, allowing a maximum of 16 channels. The TOS9200 is equipped with a "contact check function" to check the contact between the output of each channel and a test point. These features ensure highly reliable and labor-saving hipot and insulation resistance tests for electrical and electronic equipment with multiple test points.

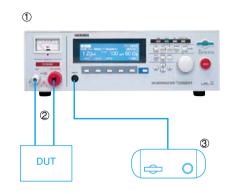
*Pictures below are showing rear views of the units with cable clamp of output terminal removed.

TOS9221 Rear View


TOS9220 Rear View

Operation of the high-voltage scanner

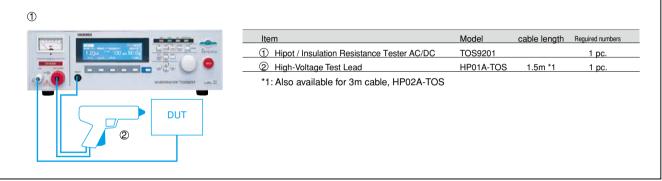
On the TOS9200/TOS9201, you can select an electric potential mode for each channel-HIGH(high voltage side), LOW (low voltage side), and OPEN (open mode). The high-voltage scanner


permits AC/DC hipot or insulation resistance tests on any of the four test points A to D. For instance, you can set CH1 (test point A) to HIGH,CH2 (test point B) to OPEN,and CH3 (test point C)CH4 (test point D)to LOW. To specify these settings, you can use the TOS9200/9201 panel or the GPIB/RS-232C.

Hipot Tester with Insulation Resistance Test

For Stand alone use···

Example of system for applying voltage by Test Lead or start/stop operation by Remote Control Box.



Item	Model	cable length	Reguired numbers
Hipot / Insulation Resistance Tester AC/DC	TOS9201		1 pc.
② High-Voltage Test Lead	TL01-TOS	1.5m *1	1 set
③ Remote Control Box	RC01-TOS *2	1.5m	1 pc.

*1: Also available for 3m cable, TL02-TOS

*2: Also available for both-hands operation, RC02-TOS

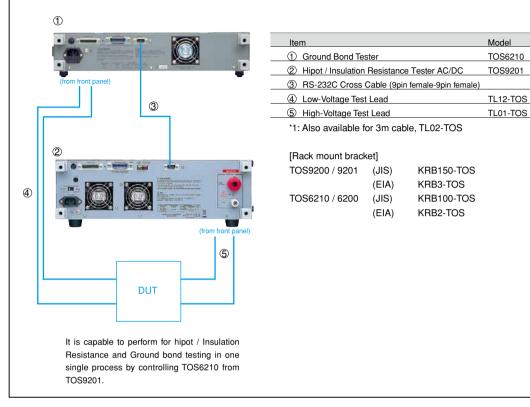
Example of system for applying voltage or start/stop operation by High-Voltage Test Probe.

For Multiple Channel Testing by High Voltage Scanner…

ſ

Example of system consisting TOS9201 and TOS9221 × 2sets (8CH)

Item	Model	cable length	Reguired numbers
High-Voltage Scanner	TOS9221		2 pc.
Hipot / Insulation Resistance Tester AC/DC	TOS9201		1 pc.
③ Interface cable	85-50-0210	0.5m *1	2 pc.
High-Voltage Test Lead (red)	TL07-TOS	1.5m	8 pc.
5 High-Voltage Leads for Parallel connection	TL06-TOS	0.5m *2	2 set
*1: If the length of cable is required more than 0	.5m , please con	tact with our loc	al distributor.
*2: Also available for 1.5m cable, TL04-TOS			


[Rack mount brack	et]	
TOS9200 / 9201	(JIS)	KRB150-TOS
	(EIA)	KRB3-TOS
TOS9220 / 9221	(JIS)	KRB100-TOS
	(EIA)	KRB2-TOS

[CAUTION] In case of using more than 2sets of High Voltage Scanner, it is required to rack mount or locate these units to the side of Hipot / Insulation Resistance Tester, and it should not be piled up more than 2sets of High Voltage Scanner units.

Hipot Tester with Insulation Resistance Test

For Single process to apply until ground bond test····

Example of system consisting TOS9201 and TOS6210

For Fully Automated System by PC···

Example of system consisting TOS9201, TOS9221 (4CH) and TOS6210

ᠿ 5 4) 6 to DUT 2 . 8 3 front pane \bigcirc 9 8 to DUT Possible to control TOS9201 and TOS6210 and acquire the test result.

Item		Model	cable length	Reguired numbers
High-Voltage Scanner		TOS9221		1 pc.
2 Hipot / Insulation Resistance Te	ster AC/D	C TOS9201		1 pc.
③ Ground Bond Tester		TOS6210		1 pc.
④ Interface cable		85-50-0210	0.5m *1	1 pc.
5 High-Voltage Test Lead (red)		TL07-TOS	1.5m	4 pc.
6 High-Voltage Leads for Parallel	connectio	n TL06-TOS	0.5m *2	1 set
⑦ Low-Voltage Test Lead		TL12-TOS	1.5m	1 set
8 GPIB Cable		408J-102	2m *3	2 pc.
9 PC (with GPIB Interface cable)				1 pc.
*1: If the length of cable is required	d more th	an 0.5m , please con	tact with our loc	al distributor.
*2: Also available for 1.5m cable	e, TL04-T	OS		
• ·	,		J-104	
*2: Also available for 1.5m cable	,		J-104	
*2: Also available for 1.5m cable *3: Also available for 1m cable,	,		J-104	
*2: Also available for 1.5m cable *3: Also available for 1m cable, [Rack mount bracket]	408J-101	I and 4m cable, 408	J-104	
*2: Also available for 1.5m cable *3: Also available for 1m cable, [Rack mount bracket]	408J-101 (JIS)	I and 4m cable, 408 KRB150-TOS	sJ-104	

[CAUTION] In case of use for combining more than 2sets of High Voltage Scanner unit and Ground Bond Tester, it is required to rack mount or locate these units to the side of Hipot / Insulation Resistance Tester, and it should not be piled up more than 2sets of High Voltage Scanner units.

cable length Reguired numbers

1.5m

1.5m *1

1 pc.

1 pc.

1 pc.

1 set

1 set

Hipot Tester with Insulation Resistance Test

Hipot Tester

tem			TOS9200	TOS9201		
Jutpi	it section		· · · · · · · · · · · · · · · · · · ·			
	Output-voltage	e range	0.05 kV to 5	.00 kV AC		
		Resolution	10 V			
		Accuracy	$\pm (1.5\% \text{ of setting} + 20 \text{ V}) \text{ [with no load]}$			
	Maximum rate	ed load (*1)	500 VA (5 k	V/100 mA)		
	Maximum rate	ed current	100 mA [output voltag	ge of 0.2 kV or more]		
	Transformer c	apacity	500	VA		
AC	Output-voltage	e waveform(*2)	Sine v	vave		
		Distortion	2% or less [with no load or pure resistive load	at output voltage of 0.5 kV or more applied]		
	Frequency		50 Hz/	60 Hz		
		Accuracy	±0.1	%		
	Voltage regulation		±3% or less [maximum	rated load \rightarrow no load]		
	Short-circuit c	current	200 mA or more, 350 mA or less [at	output voltage of 0.5 kV or more]		
	Type of output	t	PWM switching			
	Output-voltage	e range		0.05 kV to 6.00 kV DC		
		Resolution		10 V		
		Accuracy		$\pm (1.5\% \text{ of the setting} + 20 \text{ V})$		
	Maximum rated load (*1)			50 W (5 kV/10 mA)		
ю	Maximum rate	ed current		10 mA		
<i>n</i>	Ripple	No load at 5 kV		50 Vp-р Тур.		
		Maximum rated load		150 Vp-р Тур.		
	Voltage regula			1% or less [maximum rated load \rightarrow no load]		
	Short-circuit c	current		40 mA Typ.		
	Discharge fun	ction		Forced discharge at the end of test(discharge resistance: $125 \text{ k}\Omega$)		
art	voltage		The voltage at the start of the tes	t can be set as the start voltage.		
		Setting range	0% to 99% of the test vo	8 . ,		
utpu	it-voltage moni	itoring function	If the output voltage exceeds $\pm(10\%$ of the setting + 50 V), output is cut off and the protection function activates.		
oltm	eter					
Scale			6 kV AC	/DC F.S		
nalc	og	Accuracy	±5%	F.S		
		Indicator	Mean-value responsive/roo	t-mean-square value scale		
		Measurement range	0.0 kV to 6.00) kV AC/DC		
		Resolution	10	V		
igita	al	Accuracy	±(1.0% of the re	eading + 30 V)		
Response		Response	Mean-value responsive/root-mean-square value display (response time of 200 ms)			

 HOLD function
 The voltage measured at the end of test is held during the PASS and FAIL judgment time period.

*1 Time limitation on output

The tester's hipot generator is designed to radiate half as much heat as the rated output, in consideration of the size, weight, cost, and other factors of the tester. It is therefore necessary to use the tester within the ranges specified below. Operations deviating from these ranges may heat the output section excessively, thereby activating the protective circuit. In such a case, suspend the test and wait until the temperature falls to the normal level.

[Output limitation in hipot testing (Output time = voltage rise time + test time + voltage fall time)]

Ambient temperature Upper current		Upper current	Pause Time	Output time
AC 50< i s		50< i ≤ 110 mA	At least as long as the output time	Maximum of 30 minutes
t < 40 °C	AC	i ≤ 50 mA	Not necessary	Continuous output possible
t ≤ 40 °C	DC	5< i ≤ 11 mA	At least as long as the output time	Maximum of 1 minute
		i ≤ 5 mA	At least as long as the judgement wait time (WAIT TIME)	Continuous output possible

*2 Test-voltage waveform

When an AC test voltage is applied to a capacitive load, it is possible that the voltage becomes higher even than that when in the no load state. Furthermore, waveform distortion also may occur if the capacitance of the load is voltage-dependent (such as of ceramics capacitors). When the test voltage is not higher than 1.5 kV and the capacitance is not larger than 1000 pF, such test voltage changes are only of negligible levels. As the output type of the high-voltage generator block of the tester is PWM switching, switching noise and spike noise that the test voltage includes increase when the test voltage is 500 V or less. The lower the test voltage is, the more the waveform distortion increases.

Item		TOS9200			TOS9201			
Ammeter(*3)								
Measurement range		0.00 mA to 110 m	AAC		0.00 mA	A to 110 mA AC/0.0	0 mA to 11 mA DC	
		i < 1 mA	1 mA ≤ i < 10 mA	10 mA ≤ i < 100 mA		100 mA ≤ i		
Display		μΑ	□.□ □ mA	🗆 🗆 mA		🗆 🗖 🖬 mA	i = measured current	
Accuracy		±(3% of the reading	ng + 20 μ A) [after the offset can	cel function is activate	d, if the s	canner is mounted]		
Response		Mean-value respo	nsive / root-mean-square value	display (response time	of 200 m	s)		
Hold function		The measured cur	rent at the end of the test is held	during the PASS judgr	nent time	e period.		
Offset cancel function	1	The current flowing to the insulation resistor between the output cables and the stray capacity is cancelled up to 100 μ A/kV (in AC hipot testing only).						
Calibration		Performs calibration using the root-mean-square value of a sine wave with a pure resistive load						
Selection of LOW/GUA	RD for the GND (*4)	Selection permitted for current measurement between the mode for the GND point connected to the LOW terminal, and the mode using guard.						
	LOW	Connects the GND point to the LOW terminal. Measures the current flowing to the LOW terminal (chassis) (for normal operation).						
	GUARD	Sets the GND point as guard. Measures the current flowing to the LOW terminal, but does not measure the current flowing to the chassis (for high-sensitivity, high-accuracy measurements).						
Time								
Setting range for the voltage	rise time (RISE TIME)	0.1 s to 200 s						
Setting range for the volta	ge fall time (FALL TIME)	0 s to	200 s (Valid only with PASS ju	idgement)		0 s to 200 s (Valid only	with PASS judgementin AC hipot testing)	
Setting range for the test	t time (TEST TIME)			0.3 s to 999 s With the	e TIMER	OFF function		
Setting range for the judger	nent wait time (WAIT TIME)		0.3 s to 10 s (Only for DC hipot testing)[RISE TIME + 7		oot testing)[RISE TIME + TEST TIME > WAIT TIME]			
Accuracy		$\pm (100 \text{ ppm} + 20 \text{ ms})$						

Hipot Tester with Insulation Resistance Test

Item		TOS9200		TOS9201	1	
Judgement function						
Judgement method/action	Judgement	Judgement Judgement method			Buzzer	SIGNAL I/O
	UPPER FAIL	When the tester detects a current exceeding the uppe	er current,	Display The FAIL		Outputs the
		it cuts off the output and makes an UPPER FAIL jud	gement.	LED lights up.		U FAIL signal
		In DC hipot testing, however, no judgement is made	Displayed	ON	_	
		until the judgement wait time (WIT TIME) has elaps	on the LCD			
	LOWER FAIL	When the tester detects a current below the lower cur	rrent,	The FAIL		Outputs the
		it cuts off the output and makes a LOWER FAIL jud	gement.	LED lights up.	ON	L FAIL signal
		However, no judgement is made during the voltage r	ise time (RISE TIME)	Displayed	ON	
		or voltage fall time (FALL TIME) in AC hipot testing	g.	on the LCD		
	PASS	When the preset time has elapsed without any abnorn	The PASS		Outputs the	
		the tester cuts off the output and makes a PASS judgement.		LED lights up.	ON	PASS signal
				on the LCD		
	• The PASS signal	l is output at the timing preset on PASS HOLD. If	HOLD is set, the PAS	S signal is outpu	t continue	ously until
	the STOP signal	is input.		· ·		-
	• The UPPER FAI	L signal and the LOWER FAIL signal are output of	continuously until the	STOP signal is in	nput.	
	• The FAIL and PASS buzzer volumes are adjustable. However, they cannot be adjusted individually, as they are set in con					in common.
Setting range for the upper current (UPPER)		0.01 mA to 110 mA AC	0.01 mA to	110 mA AC / 0.01 mA to 11 mA DC		
Setting range for the lower current(LOWER)	0.01 mA to 1	10 mA AC(With the LOWER OFF function)	0.01 mA to 110 mA AC /0	0.01 mA to 11 mA DC (With the LOWER OFF funct		
Judgement accuracy (*3)		$\pm(3\% \text{ of setting} + 20 \mu\text{A})$ [After the offset cance	l function is activated,	if the scanner is	mounted]
Current detection method	The absolute current values are integrated and compared with the reference value.					
Response-speed switching function	The curre	ent-detection response speed for UPPER FAIL judgem	ent can be set to FAST/N	AID/SLOW (for A	C hipot te	sting only).
approximately 22 µA/kV flows into the stray capa	acity of each scanner."	ent leadwire and fixtures. When the optional high-voltage The table below shows the approximate currents flowing in capacity is added for measurement purposes to the curren	nto such stray capacity.		sensitivity	, high-
		stray capacity to the lower/upper current When the LOW to			•	

accuracy judgement, it is necessary to add the current flowing into the stray capacity to the lower/upper current. When the LOW terminal is set to FLOAT, the effect of the current flowing into the stray capacity is negligible. If the offset cancel function is used, the current flowing into the stray capacity can be eliminated from the measurement.

are study capacity is negligible. If the other cancel function is used, the cartern nowing into the study capacity can be entiminated from the inclusion inter-						
Output voltage	1kV	2kV	3kV	4kV	5kV	
Hanging a 350-mm test lead wire (Typ. value)	2 μΑ	4 μΑ	6 µA	8 μΑ	10 µ A	
Using the accessory leadwire TL01-TOS (Typ. value)	16 µ A	32 µA	48 µ A	64 µ A	80 µ A	
High-voltage scanner (Typ. value, not including the test leadwire)	22 µ A	44 µ A	66 µ A	88 µ A	110 µA	

*4 With the GND set to GUARD, current measurement is disabled if the part of the DUT connected to the LOW terminal is grounded, which poses extreme danger. Never ground the DUT. In ordinary operation, set the GND to LOW.

Insulation Resistance Tester

Item			TO\$9200 TO\$9201				
Output section							
Output-voltage rang	e		-25 V to -1000 V DC				
	Resolution			1 V			
	Setting accuracy			±(1.5 % of Sett	ting + 2 V)		
Maximum rated load	d			1 W (-1000 V I	DC/1 mA)		
Maximum rated cur	rent			1 mA	A		
Ripple	1 kV no-load			2 Vp-p or	r less		
	Maximum rated load			10 Vp-p o	or less		
Voltage regulation			1	% or less [Maximum ra	ated load \rightarrow no load]		
Short-circuit current	t			12 mA or	r less		
Discharge function				0	(discharge resistance : $25 \text{ k}\Omega$)		
Output-voltage mon	itoring function	If the	output voltage exceeds $\pm(104)$	% of the setting + 50 V).	, output is cut off and the protection function activates.		
Voltmeter							
Analog	Scale			6 kV AC/E	DC F.S		
	Accuracy	±5% F.S					
	Indicator	Mean-value responsive / root-mean-square value scale					
Digital	Measurement range	0 V to -1200 V					
	Resolution	1 V					
	Accuracy	$\pm (1 \% \text{ of reading } + 1 \text{ V})$					
Resistance meter		<u>r</u>					
Measurement range		0.01 MΩ - 9.99 GΩ (Within the maximum rated cu	rrent range of 1 mA to 5	50 nA)		
Display		R < 10.0 MΩ	$10.0M\Omega \le R < 100.0M\Omega$	$100.0M\Omega \le R < 1.0$	$1.00G\Omega \le R \le 9.99G\Omega$		
		Ο.Ο Ο ΜΩ	ΩΜΩ	ΟΟΜΩ	$\Box \Box \Box G \Omega$ R = measured insulation resistance		
Accuracy		$50 \text{ nA} \le i \le 100 \text{ nA}$	A $100 \text{ nA} < i \le 200 \text{ nA}$	200 nA < i ≤ 1 µA	$1 \mu\text{A} < i \le 1 \text{mA}$		
		± (20 % of reading	g) $\pm (10\% \text{ of reading})$	± (5 % of reading)	\pm (2 % of reading) i = measured current		
		[In the humidity range of 20 %rh to 70 %rh (no condensation), with no disturbance such as swinging of the test leadwire]					
Hold function		The measured current at the end of the test is held during the PASS period.					
Selection of LOW/0	GUARD for the GND (*5)	Selection permitted for	current measurement betweer	the mode for the GND	point connected to the LOW terminal, and the mode using guard.		
LOW		Connects the GND p	oint to the LOW terminal. M	leasures the current flow	wing to the LOW terminal (chassis) (for normal operation).		
	GUARD	Sets the GND point	as guard. Measures the curr	ent flowing to the LOV	W terminal, but does not measure the current		
			is (for high-sensitivity, high				
			5 ,, 5	-			

TOS9200 SERIES Hipot Tester with Insulation Resistance Test

Item		TOS9200			TOS9201				
Judgement function									
Judgement method/action	Judgement	Judgement method			Display	Buzzer	SIGNAL I/O		
	UPPER FAIL	When the tester detects a resistance exceeding the upper cutoff resistance, The FAIL OI					Outputs the		
		-	d makes an UPPER FAII		LED lights up.		U FAIL signal		
		no judgement is made d	uring a voltage rise time	e (RISE TIME).	Displayed				
		on the LCD							
	LOWER FAIL		a resistance below the lo	,	The FAIL	ON	Outputs the		
		-	d makes a LOWER FAII	0 0	LED lights up.		L FAIL signal		
		no judgement is made until the judgement wait time (WAIT TIME) Displayed on the LCD							
	PASS		as elapsed without any a	h	The PASS	ON	Outputs the		
	PASS	•	tput and makes a PASS		LED lights up.	ON	PASS signal		
		the tester ents on the of	aput and makes a 1765	judgement.	Displayed		1A55 signai		
					on the LCD				
	The PASS signal	is output at the timing	preset on PASS HOLI	D If HOLD is set the					
		• The PASS signal is output at the timing preset on PASS HOLD. If HOLD is set, the PASS signal is output continuously until the STOP signal is input.							
		• The UPPER FAIL signal and the LOWER FAIL signal are output continuously until the STOP signal is input.							
	• The FAIL and PA	SS buzzer volumes ar	e adjustable. However.	they cannot be adjusted individually, as they are set in common.					
Setting range for the upper resistance (UPPER)			01 MΩ to 9.99 GΩ [B			-			
Setting range for the lower resistance (LOWER)			01 MΩ to 9.99 GΩ [B						
Judgement accuracy	Judgement current	Judgement current 50 nA $\leq i \leq 100$ nA 100 nA $< i \leq 200$ nA 200nA $< i \leq 1 \mu$ A 1 μ A $< i \leq 1$ mA							
For both UPPER and LOWER	UPPER, LOWER	$0.01 \leq \mathrm{R} < 10.0 \ \mathrm{M}\Omega$	_	-			setting + 3digit)		
		10.0 ≤ R < 50.0 MΩ	_	_	± (5 % of setting + 5digit)	± (2 % of s	setting + 3digit)		
		$50.0 \le R < 100 M\Omega$	-	-	± (5 % of setting + 5digit)	± (2 % of s	setting + 3digit)		
		$100 \text{ M}\Omega \leq \text{R} < 200 \text{ M}\Omega$	-	± (10 % of setting + 5digit)	± (5 % of setting + 5digit)	± (2 % of s	setting + 3digit)		
		$200 \text{ M}\Omega \leq \mathrm{R} < 500 \text{ M}\Omega$	± (20 % of setting + 5digit)	± (10 % of setting + 5digit)	\pm (5 % of setting + 5digit)	± (2 % of s	setting + 3digit)		
		$500~\mathrm{M}\Omega \leq \mathrm{R} < 1.00~\mathrm{G}\Omega$	\pm (20 % of setting + 5digit)	± (10 % of setting + 5digit)	\pm (5 % of setting + 5digit)	± (2 % of s	setting + 3digit)		
		$1.00~\mathrm{G}\Omega \leq \mathrm{R} < 2.00~\mathrm{G}\Omega$	± (20 % of setting + 10digit)	± (10 % of setting + 5digit)	\pm (5 % of setting + 5digit)		-		
		$2.00~\mathrm{G}\Omega \leq \mathrm{R} < 5.00~\mathrm{G}\Omega$	\pm (20 % of setting + 20digit)	± (10 % of setting + 10digit)	\pm (5 % of setting + 5digit)		-		
		$5.00~\mathrm{G}\Omega \leq \mathrm{R} < 10.0~\mathrm{G}\Omega$	± (20 % of setting + 20digit)	± (10 % of setting + 10digit)	_		-		
	Judgement curre	ent = test voltage/(UPF	ER,LOWER)			•			
		0,	6rh (no codensation), v	with no disturbance suc	h as swinging of the	test leadw	ire]		
	[In LOWER judge	ement, at least 0.5 s is i	necessary for testing af	fter the WAIT TIME ha	as elapsed. In LOWE	R judgeme	ent		
	for 200 nA or low	er, a wait time of at lea	st 1.0 s is necessary.]						
Time									
Setting range for the voltage rise time (RISE TIME)			0.	1 s to 200 s					

Setting range for the voltage rise time (RISE TIME)	0.1 s to 200 s
Setting range for the test time (TEST TIME)	0.5 s to 999 s With the TIMER OFF function
Setting range for the judgement wait time (WAIT TIME)	0.3 s to 10 s [RISE TIME + TEST TIME > WAIT TIME]
Accuracy	$\pm (100 \text{ ppm} + 20 \text{ ms})$

*5 When the GND is set to GUARD, current measurement is disabled if the part of the DUT connected to the LOW terminal is grounded, which poses extreme danger. Never ground the DUT. In ordinary operation, set the GND to LOW.

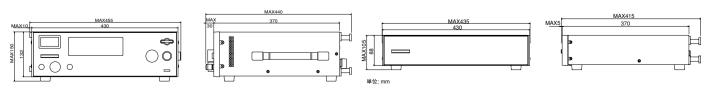
General Specifications

		TOS9200	TO\$9201				
Item		1039200	1039201				
Environment		· · ·					
Installation location	1		ide of up to 2000 m				
Warranty range	Temperature		o 35 °C				
	Humidity		(No condensation)				
Operating range	Temperature	0 °C to	o 40 °C				
	Humidity	20 %rh to 80 %rh	(No condensation)				
Storage range	Temperature	-20 °C	to 70 °C				
	Humidity	90 %rh or less (1	No condensation)				
Power requirements							
Nominal voltage range (A	llowable voltage range)	100 V to 120 V AC / 200 V to 240 V AC (85 V	/ to 130 V AC / 170 V to 250 V AC) Selectable				
Power consumption	Using no load (READY)	100 VA or less					
	Using the rated load	Maximum of 800 VA					
Allowable frequency	range	47 Hz to 63 Hz					
Insulation resistance		$30 \text{ M}\Omega$ or more (500 V DC) [between the AC LINE and chassis]					
Hipot		1390 V AC, 2 seconds, 20 mA or less [between the AC LINE and chassis]					
Ground bond		25 A AC/0.1 Ω or less					
Electromagnetic con	npatibility (EMC) (*6)	Conforms to the requirements of the following directive and standard.					
		EMC Directive 2004/108/EC, EN61326, EN61000-3-2, EN61000-3-3					
		Under following conditions					
		1. Used test leadwire TL01-TOS which is supplied. 2. No discharge or	1. Used test leadwire TL01-TOS which is supplied. 2. No discharge occurs at outside of the tester.				
		3. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used.					
Safety (*6,7)		Conforms to the requirements of the following directive and standard.					
		Low Voltage Directive 2006/95/EC, EN61010-1, Class I, Pollution degree 2					
Dimensions(maximu	ım)	430[16.93 inch] (455[17.91 inch]) W × 132[5.20 inch] (150[5.91 inch]) H × 370[14.57 inch] (440[17.32 inch]) D mm					
Weight		Approx. 19 kg(A	Approx. 19 kg(Approx.41.89 lbs)				

Hipot Tester with Insulation Resistance Test

	Item	TOS9200	TOS9201				
Accessory							
AC Power cable		1 pc.					
High-voltage test lead wi	ire TL01-TOS (1.5 m)	1 set					
Interlock jumper		1 pc.					
High-Voltage Danger	r seal	1 sheet					
Fuse		1 pc.					
Operation Manual		Operation Manual for Tester: 1 copy, Operation for GPIB/RS-232C Inte	erface: 1 copy				
*7 This instrument is a		vanel. Not applicable to custom order models. e to ground the protective conductor terminal of the instrument. The safety of the 220/9221)	instrument is not guaranteed unless the instrument is grounded properly.				
Item		TO\$9220	TOS9221				
Maximum rating	AC	5.	0 kV				
voltage	DC	6.	0 kV				
Number of channels	-		e to HIGH, LOW, or OPEN.)				
	f scanners connected		a order of connection to the TOS9200/9201 tester.				
			3 rd scanner CH9 to CH12 4 th scanner CH13 to CH16				
Contact check function	on	None (*1)	Provided				
	1						
Lamps and LEDs	POWER	5	WER switch of the TOS9200/9201 tester				
	DANGER	e e	NGER lamp of the TOS9200/9201 tester				
	CHANNEL	Lights during a test at each channel HIGH:	red; LOW: green; Under contact check: orange				
Power requirements							
Nominal voltage range (a	0 0.	100 V to 120 V AC/200 V to 240 V AC (85 V to 132 V AC/170 V to 250 V AC) Automatic switching					
Power consumption	In READY state	Approx. 12 VA					
	During test	40 VA maximum					
Allowable frequency	range	47 Hz to 63 Hz					
nsulation resistance		30 M Ω or more (500 V DC) [between the AC LINE and chassis]					
Hipot		1390 V AC, 2 seconds, 10 mA or less [between the AC LINE and chassis]					
Ground bond		25 A AC/0.1 Ω or less					
Electromagnetic compatibility (EMC) (*2)		Conforms to the requirements of the following directive and standard. EMC Directive 2004/108/EC, EN61326, EN61000-3-2, EN61000-3-3 Under following conditions 1. Used test leadwire TL07-TOS which is supplied. 2. No discharge occurs at outside of the tester. 3. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used.					
Safety (*2,3)		Conforms to the requirements of the following directive and standard.					
.		Low Voltage Directive 2006/95/EC, EN61010-1, Class I, Pollution deg	gree 2				
Environment			· · · · · · · · · · · · · · · · · · ·				
nstallation location	-	Indoors and at altitudes up to 2000 m					
Warranty range	Temperature		to 35 °C				
<u> </u>	Humidity		h (no condensation)				
Operating range	Temperature		to 40 °C				
	Humidity		h (no condensation)				
Storage range	Temperature		C to 70 °C				
	Humidity		(no condensation)				
Dimensions		430[16.93 inch](435[17.13 inch])W × 88[3.46 inch](105[4.13 inch])H × 370[14.57 inch](415[16.34 inch]) Dmm					
Weight		Approx. 6.5 kg(Approx.14.33 lbs)					
Accessories							
AC power cable		1	pc.				
High-voltage test leadwires, red		4 pc. (1.5 m each)	8 pc. (1.5 m each)				
High-voltage leads for	r parallel connection	1 set (0	.5 m each)				
Interface cable			.(0.5 m)				
Interface cable							
	tickers	For the panel face: 1 she	For the panel face: 1 sheet; for the test leadwires: 1				
Channel-indication st		*					
Channel-indication st "HIGH VOLTAGE, I		2 s	sheets				
Channel-indication st		2 s 2 pc. (including a spare c					

*1 When the contact check function is activated on the TOS9220/9201 tester, the tester conducts a contact check up to the output terminals of the TOS9220 scanner.


*2 Only on models that have CE marking on the panel. Not applicable to custom order models.

*3 This instrument is a Class I equipment. Be sure to ground the protective conductor terminal of the instrument. The safety of the instrument is not guaranteed unless the instrument is grounded properly. [Measurement accuracy achieved when the scanner and the TOS9220/9201 tester are connected]

In an AC hipot test, a current of approx. 22 μ A/kV flows per scanner due to stray capacitance in the scanner in comparison with use of the TOS9220/9201 tester alone. Note that

this current may contribute to errors in current measurements conducted by the TOS9220/9201 tester.

—External dimensional diagrams—

TOS9200 / TOS9201

TOS9220 / TOS9221

Unit: mm

Hipot Tester with Insulation Resistance Test

For the insulation testing of PV(Photovoltaic) module

TOS9213AS(DCW/IR)

GPIB RS-232C

Accompanied with the features and performance of TOS9200 series, and it extends additional features and specifications exclusively applied to the PV module testing.

The TOS9213AS, DC Withstanding Voltage/Insulation Resistance Tester, is the test instrument that can handle the insuration test with high voltage and high resolution required for the evaluation of the PV module, Cable, Connector, and Junction Box. The TOS9213AS is equipped with functions of the DC withstanding voltage testing and the insulation resistance testing accompanied with the features and performance of Kikusui's high-end model TOS9200 series, and it extends additional features and specifications exclusively applied to the PV module testing. Furthermore, the TOS9213AS improves the current measurement accuracy of the DC withstanding voltage testing from the original specification of the TOS9000 series.

- Up to 10 kV/5 mA with a maximum output of 50 W in DC withstanding voltage test
- Perform insulation resistance testing in the range of -25 V to -1500 V / 0.01 M to 9.99 G
- Applies for the testing of IEC61730-2 standard
- High-precision current measurement, 1 µA of the setting resolution for judgement
- Low output ripple of 100V p-p at 10 kV with consideration of capacitive load
- Capable of setting voltage rise rate by Rise Time Control Function, equipped with Discharge Function
- Capable of converting judgements of insulation resistance test into values of resistance and current
- Capable of applying high voltage and monitoring current for PID symptom (-1500VDC/100µA)

TOS9213AS

Hipot Tester with Insulation Resistance Test

Hipot Tester

Output sect	tion(DC)					
Output-voltage range		0.05V to 10.0kV				
Resolution		10V				
	Accuracy	±(1.5% of setting +20V)				
Maximum	rated load *1	50W(10kV/5mA)				
Maximum	rated current	5mA				
D' 1	No load at 10kV	100Vp-р Тур.				
Ripple	Maximum rated load	100Vp-р Тур.				
Voltage reg	ulation	1% or less [maximum rated load → no load]				
Short-circu	it current	40mA Typ.				
Discharge function		Forced discharge at the end of test (discharge resistance: 500 k) The discharge time can be set to a value from 0.5 s to 300 s. (*				
Start voltag	je	The voltage at the start of the test can be set as the start voltage.				
-	Setting range	0% to 99% of the test voltage (resolution of 1%)				
Output-volt	age monitoring function	If the output voltage exceeds $\pm (10\% \text{ of setting } + 50\text{V})$, output is cut off and the protection function activates.				
Voltmeter						
	Scale	10kV DC F.S				
Analog	Accuracy	±5% F.S				
	Indicator	Mean-value responsive				
	Measurement range	0.00 to 10.5kV DC				
	Resolution	10V				
Digital	Accuracy	±(1.0% of reading + 20 V)				
Digital	Response	Mean-value responsive (response time of 200 ms)				
	HOLD function	The voltage measured at the end of test is held during the PASS and FAIL period.				

*1: Limitation on output

The tester's withstanding voltage generator is designed to radiate half as much heat as the rated output, in consideration of the size, weight, cost, and other factors of the tester. It is therefore necessary to use the tester within the ranges specified below. Operations deviating from these ranges may heat the output section excessively, thereby activating the protective circuit. In such a case, suspend the test and wait until the temperature falls to the normal level.

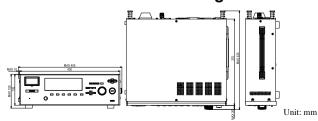
Output limitation in withstanding voltage testing

Ambient temperature		Upper reference	Pause	Output time		
		2.5mA < i	At least as long as the output time	Maximum of 1 minute		
t ≤40°C	DC	i ≤ 2.5mA	At least as long as the judgement wait time (WAIT TIME)	Continuous output possible		
[Output time = voltage tige + test time + voltage fall time]						

*2: About the discharge time settingIf

you set the discharge time to 0.0 s or if the voltage between the output terminals exceeds approximately 30 V even after the specified discharge time has passed, the TOS9213S will continue discharging until the voltage between the output terminals falls below approximately 30 V.

Ammeter					
Measurement range	0.00 mA to 5.5 mA DC				
A	0μA to 2.00mA: ±(3% of reading + 5μA)				
Accuracy *3	2.01mA to 5.50mA: ±(3% of reading +10µA)				
Response	Mean-value responsive (response time of 200 ms)				
Hold function	The measured current at the end of the test is held during the PASS period.				


Judgement function Setting range for the upper reference 1μΑ to 999μΑ 1μΑ STEF (UPPER) .00mA to 5.50mA 0.01mA STEP 1µA to 999µA 1µA STEP Setting range for the lower ref-erence .00mA to 5.50mA 0.01mA STEP (LOWER) (With the LOWER OFF function) 0μ A to 2.00mA: $\pm(3\%$ of setting + 5μ A) Judgement accuracy *3 2.01mA to 5.50mA: $\pm(3\% \text{ of setting} + 10\mu\text{A})$ The current detection response for UPPER FAIL Response switching function judgement can be set to FAST/MID/SLOW (*4) Time

Setting range for the voltage rise time (RISE TIME) 0.1s to 200s

Setting range for the test time (TEST TIME) 0.3s to 999s (With the TIMER OFF function)

*3: When the GND LOW/GUARD setting is set to LOW, the humidity must not exceed 70 % rh.
 *4: In the MID and SLOW modes, depending on the discharge method, the voltage monitoring function may operate and the TOS9213S may enter the PROTECTION status before UPPER FAIL detection takes place.

— External dimensional diagrams —

*The highlighted text in red indicates the improved specification exclusively applied to the PV module testing.

Insulation Resistance Tester

Output section							
Output-voltage	range			-25V to -1	500V		
		Resolution		1V			
		Accuracy		±(1.5% of	setting+2V)		
Maximum rated	l load			1W(-1000	V/1mA), 0.15W(-150	00V/0.1mA)	
Maximum rated current				1mA			
Pipple 1 kV no-load		L I	2 Vp-p or	less			
Ripple		Maximum ra	ted load	10 Vp-p or	less		
Voltage regulat	ion			1% or less	[Maximum rated loa	ad no load]	
Short-circuit cu	rrent			12 mA or	ess		
Discharge funct	tion			resistance:	charge at the end of t $25 \text{ k}\Omega$)The discharge 0.5s to 300 s.(*2)	est (discharge e time can be set to a	
Output-voltage monitoring function					t voltage exceeds ±(109 t off and the protection	% of the setting + 50 V), function activates.	
Voltmeter		1					
		Scale 1		10kV DC F.S			
Analog				±5% F.S			
				Mean-value responsive			
				0 to -1700	V		
Digital				1V			
		Accuracy		$\pm (1.0\% \text{ of reading } +1\text{V})$			
Resistance met		0.01 14 0.00	C OUT-1	a		<u>(1 4 70 4)</u>	
Measurement ra	ange	0.01 M - 9.99	G(Within	the maxin	num rated current rang	ge of 1 mA to 50 mA)	
Accuracy	50n/	A ≤ i ≤ 100nA	100nA < i	≤ 200nA	$200 \mathrm{nA} < \mathrm{i} \leq 1 \mu \mathrm{A}$	lµA < i ≤ 1mA	
	±(20	% of reading.)	±(10% of	reading.)	±(5% of reading.)	±(2% of reading.)	
		numidity range of est leadwire]	20 % to 70 %	& R.H (no co	ndensation), with no dist	[i=measured current] urbance such as swinging	
Judgement fund	ction						
Judgement method			The UPPER/LOWER judgement can be switched between the resistance value-based judgement and current value-based judgement. The action for the judgement method by the current valued-based judgement, Display, Buzzer, SIGNAL I/O can be referred to the action in Withstanding Voltage Test Mode.				
Setting range	Resist	ance value-base	d judgment	0.01 M to 9.99 G [Below the maximum rated current]			
for the upper reference(UPPER)	Curre	nt value-based	judgment	0.1 µA to 1.00 mA			
Setting range for the lower reference		ance value-base	d judgment	0.01 M to	9.99 G [Below the may	ximum rated current]	

the lower reference (LOWER) Current value-based judgment $0.1 \ \mu A$ to $1.00 \ mA$ Time Setting range for the voltage rise time (RISE TIME) 0.1 s to 200s Setting range for the test time(TEST TIME) 0.5 s to 999s(With the TIMER OFF function)

General Specifications

Power requirements	Nominal voltage range (Allowable voltage)	100 V to 120 V AC / 200 V to 240 V AC (85 V to 130 V AC / 170 V to 250 V AC) Selectable			
D .:	Using no load (READY)	100 VA or less			
Power con-sumption	Using the rated load	Maximum of 200 VA			
Allowable frequency ra	inge	47Hz to 63Hz			
Insulation resistance		30 MΩ or more (500 V DC) [between the AC LINE and chassis]			
Withstanding voltage		1390 V AC, 2 seconds, 20 mA or less [between the AC LINE and chassis]			
Earth continuity		25 A AC/0.1 Ω or less			
Safety		Conforms to the requirements of the following standard. IEC 61010-1 Class I Pollution degree 2			
Warranty range	Temperature/ Humidity	5°C to 35°C/20% to 80% rh(No condensation)			
Operating range	Temperature/ Humidity	0°C to 40°C/20% to 80%rh(No condensation)			
Storage range	Temperature/ Humidity	-20°C to 70°C/90 % RH or less (No condensation)			
Dimensions(maximum	ı)	430[16.93 inch](455[17.91 inch])W× 132[5.20 inch](150[5.91 inch])H×			
		400[15.75 inch](440[17.32 inch])Dmm			
Weight		Approx. 13 kg (Approx. 28.66 lbs)			
Accessory		AC Power cord 1 pc., High-voltage test leadwire TL01-TOS (1.5 m) 1 set, Interlock jumper 1 pc., HIGH VOLTAGE DANGER sticker 1 sheet, Fuse 1pc., Operation Manual 1 copy			

TOS5300 SERIES Hipot Tester/Hipot Tester with Insulation Resistance Test

A new standard for Hipot & Insulation resistance testing Applied to World-Wide input voltage

TOS5301

TOS5300(ACW) TOS5301(ACW/DCW) TOS5302(ACW/IR)

New low-cost standard model that provides thorough operability, reliability and safety.

The "TOS5300 Series" is a series of test instruments used in Hipot tests and insulation resistance tests, two of the four tests regarded as necessary for ensuring the safety of electrical products. With an output of 5 kV/100 mA (AC) and 6 kV/10 mA (DC), the series can be used in Hipot & insulation resistance testing of electronic equipment and electronic parts, based on the requirements of IEC, EN, UL, VDE, JIS, and other international safety standards and the Electrical Appliance and Material Safety Law. Also, the test voltage stability is improved with the adoption of a newly developed switching amplifier. Since the output voltage can be kept constant even when the AC line voltage or frequency changes, consistent testing can be performed, even when the power supply environment is in an unstable region. The TOS5300 is also equipped with a number of features that are capable of meeting a variety of test needs. It is a new low-cost standard model that provides thorough operability, reliability and safety.

- The PWM amp system provides highly-stable output
- 5kV/100mA (500VA) AC Hipot test
- 6kV/maximum output 50W DC Hipot tester (TOS5301)

DRIVERS

USB

- 25V-1000V (7 steps), 500V or greater, up to 5.00G Ω Insulation Resistance test
- High-precision measurement ±1.5% of reading (with voltmeter 500V or higher, Ammeter 1mA or higher)
- Rise time(AC/DC) / Fall time(AC) control
- Key lock function and Protection cover for key operation
- Equipped with USB interface

Hipot Tester/Hipot Tester with Insulation Resistance Test

Basic performance

The achievement of AC Hipot testing with a constant stable output! [Input voltage variation : ± 0.3%]

A conventional Hipot tester boosts and outputs the AC line's input voltage through the use of a slide transformer. With this slide transformer system, input voltage fluctuations will affect the output, preventing tests from being performed properly. At times, the application of distortion voltage applied to the EUT may cause a failure of new product (accelerating a deterioration of components). Since the TOS5300 Series equips with a high-efficient PWM amplifier that can output a stable high-voltage without being affected by the variation of AC power line, users can perform "safe", "stable", and highly "reliable" tests with confidence, even in regions with large voltage variations.

Realizing high-precision measurement with high-resolution and high-speed judgement

Equipped with a high-accuracy, high-resolution of True RMS measurement circuit, including a Voltmeter with $\pm 1.5\%$ of reading (500V or greater) / minimum resolution of 1V, and an Ammeter with $\pm 1.5\%$ of reading (1 mA or more) / minimum resolution of 1µA. In addition, it is also equipped with an Auto range function, with achieving a judgment accuracy of $\pm 1.5\%$ of reading. The Lower limit judgment accuracy achieves a level of performance equivalent to the Upper limit judgment accuracy that enables to detect for such a poor contact or disconnections of test leads. Moreover, it realizes the fast judgment by the test time of 0.1 second, while reliable testing can be performed, thanks to high-precision, high-resolution, high-speed measurement and the judgment functions.

Supporting the World-wide input voltage

Usable in any country, without changing the input power supply. The instrument not rely on the input power environment. Supplying the stable test voltage with 50/60 Hz frequencies.

Reducing the tact time

Reduction of the tact time leads to improve the productivity. However, it has been an issue that reducing the tact time may cause to worsen the measurement accuracy when the test time is faster than the measuring response speed. The TOS5300 series has been achieved to set the test time from 0.1s.

6kV/50WDC Hipot test (Model TOS5301)

Capable to perform DC Hipot test up to 6 kV. (Model TOS5301) Equipped with a stable DC/DC converter with a low-ripple and the load variation of 3% or less.

Insulation resistance test for 25V to 1000V*

The TOS5302 is equipped with an insulation resistance tester. The test voltages can be set from 25V, 50V, 100V, 125V, 250V, 500V and 1000V. And for setting at 500V and above, it can perform the insulation resistance test up to 5.00 G Ω .

*At 500V and above, measurements up to 5.00 $G\Omega$ are possible.

Protection cover prevents physical operation error in the production site

In many cases, workers on electronic equipment production lines and inspection lines are not technical experts. Therefore, it is possible that the operators may change setting conditions and make operation errors. In order to prevent from such cases, the TOS5300 is equipped with a key lock function and a protection cover to disable a physical key operation from the front panel.

New design of output terminal improves safety and functionality

In consideration of safety for the operator and the environment, the output terminal of HIGH-side has been placed in the most distant location from the control area. The free rotation machanisim protects from twisting (or breaking) of the cable. Also, with having the lock function for the LOW terminal on the main unit, the metal plate is no longer attached to the test lead of LOW-side, and it makes to resist damage to the test lead. Because of elimination of these projected components, the TOS5300 can avoid from unexpected accidents such as when the unit travels to other location. And also when the test lead is snagged on something, or unexpected stress is applied on the test lead, the High (High-voltage) test lead is designed to disconnect easily, but the Low (ground) test lead is designed to resist disconnection.

In order to prevent the insertion error, the color coding of the cable are classified to HIGH (red) and LOW (black), and the plug shape of terminal are also different design.

▲ View with the protection cover removed

Hipot Tester/Hipot Tester with Insulation Resistance Test

Unless specified otherwise, the specifications are for the following settings and conditions.

- The warm-up time is 30 minutes.
 TYP:These are typical values. These values do not guarantee the performance of the product.
- rdng: Indicates the readout value.
- set: Indicates a setting.
- f.s: Indicates full scale.

Hipot Tester

	1			TOS5300	TC	085301	TO\$5302		
	Output rang	ge			0.05 kV	/ to 5.00 kV			
		Accuracy			±(2 % of set + 20 V)	when no load is connected			
		Setting range		0.00 kV to 5.50 kV					
		Resolution			10	V steps			
	Max. rated	output *1			500 VA (5	5 kV/100 mA)			
	Max. rated	voltage			:	5 kV			
	Max. rated	current			100 mA (when the output	t voltage is 0.5 kV or greate	er)		
AC output	Transforme	er rating			50	00 VA			
ection	Output volt	age waveform *2				Sine			
		Distortion		If the output voltage is	0.5 kV or more: 3 % or les	s (when no load or a pure r	esistive load is connected).		
	Frequency				50 Hz	z or 60 Hz			
		Accuracy			±0.5 % (excluding of	during voltage rise time)			
	Voltage reg	ulation		10 %	or less (when changing fr	om maximum rated load to	no load)		
	Input volta	ge variation		±0.3 % (5 l	V when no load is connec	ted; power supply voltage:	90 V to 250 V)		
	Short-circu	it current		20	0 mA or more (when the or	utput voltage is 1.0 kV or g	reater)		
	Output met	hod			PWM	switching			
	Output rang	ge			0.05 kV	/ to 6.00 kV			
		Accuracy	1		± (2 % o	of set + 20 V)			
		Accuracy			When no lo	ad is connected			
		Setting range			0.00 kV	/ to 6.20 kV			
		Resolution			10	V STEP			
	Max. rated	output *1			50 W (5	kV / 10 mA)			
	Max. rated	voltage				6 kV			
OC output	Max. rated	current		_	1	0 mA	_		
ection	Ripple(TYF	5 kV when no load is connected			50) Vp-p			
		Max. rated load			10	0 Vp-p			
	Voltage reg	ulation				changing from maximum d to no load))			
	Short-circu	it current (TYP)			40 mA (when ger	neration 6 kV output)			
	Discharge f	feature				after test completion sistance: $125 \text{ k}\Omega$)			
Start Voltage				The voltage at t	ne start of withstanding vol	Itage tests can be set to 50%	b of the test voltage.		
Limit Voltag	e			The test voltage	upper limit can be set . A	C: 0.00 kV to 5.50 kV, DC	0.00 kV to 6.20 kV		
Output volta	ge monitor fea	ature	If output voltage exceeds the specified value + 350 V or is lower than the specified value - 350 V, output is turned off, and protective features are activated.						
		Scale			6 kV /	AC/DC f.s			
	Analog	Accuracy			±:	5 % f.s			
		Indication			Average value	response/rms scale			
Voltmeter		Measurement range			0.000 kV to	6.500 kV AC/DC			
	D	Display				kV			
	Digital	Accuracy		V -	500 V: ±(1.5 % of rdng +	20 V); V \geq 500 V: ±1.5 %	of rdng		
		Response			True rms (resp	oonse time: 50 ms)			
		Hold feature	After a test is finished, the measured voltage is retained until the PASS or FAIL judgment is cleared.						
		Measurement range	AC: 0	.00 mA to 110 mA		mA to 110 mA mA to 11 mA	AC: 0.00 mA to 110 mA		
			i = measured cur	rent	I		·		
		D: 1		i < 1 mA	1 mA ≤ i < 10 mA	10 mA ≤ i < 100 mA	100 mA ≤ i		
Ammeter	Digital	Display		<u> </u>	mA	mA	mA		
		Accuracy *3		1.00 n	A ≤ i: ±(1.5 % of rdng); i •	< 1.00 mA: ±(1.5 % of rdns	g + 30 μA)		
		Response				ponse time: 50 ms)	~ • *		
		Hold feature			shed, the measured voltage				

Hipot Tester/Hipot Tester with Insulation Resistance Test

Hipot Tester

	-			TO\$5300 TO\$5301					TOS5302		
				Judgment	Judg	ment method	Disp	olay	Buzzer	SIGNAL I/O	
					the output is turned off, and a an UPPER FAIL judgment occ	or equal to the upper limit is detected, n UPPER the output is turned off, and urs. During the voltage rise time (Rise UPPER FAIL judgment also occurs if ltage rise ratio.	FAIL LE OVER is on the		ON	Generates a U-FAIL signal	
	0			LOWER FAIL	the output is turned off, and This judgment is not perfor	or equal to the lower limit is detected, a LOWER FAIL judgment occurs. med during voltage rise time (Rise the voltage fall time (Fall Time) of	FAIL LE UNDER is on the		ON	Generates a L-FAIL signal	
Judgment feature				PASS	If the specified time elapses turned off, and a PASS judgm	without any problems, the output is nent occurs.	PASS LE	D lights	ON	Generates a PASS signal	
			The The For I	UPPER FA FAIL and P PASS judgr	IL and LOWER FAIL signals ASS buzzer volume levels can	ne buzzer sounds for is fixed to 0.2 sec	OS5300 Ser				
	Upper limit se	AC: 0.01 mA to 110 mA			AC: 0.01 mA to 110 mA DC: 0.01 mA to 11 mA			AC: 0.0	01 mA to 110 mA		
	Lower limit s	etting		AC: 0.01	mA to 110 mA / OFF	AC: 0.01 mA to 110 mA / OI DC: 0.01 mA to 11 mA / OF	$\Lambda C: 0.01 \text{ mA to } 110 \text{ mA } / OFF$			nA to 110 mA / OFF	
	Judgment acc	curacy *3			1.00 mA	$\leq i: \pm (1.5 \% \text{ of set}), i < 1.00 \text{ mA}: \pm (1.5 \% \text{ of set})$.5 % of set -	+ 30 µA)			
	Current detec	tion method	Calculates the current's true rms value and compares this value with the reference value								
	Calibration		Calibrated with the rms of a sine wave using a pure resistive load								
	Voltage rise ti	Resolution	ne 0.1 s to 10.0 s								
		0.1 s									
Time	Voltage fall ti	0.1 s / OFF (only enabled when a PASS judgment occurs)									
	Test time	D 1.4				0.1 s to 999 s, can be turned off (TIN	· · · ·				
		Resolution				0.1 s to 99.9 s: 0.1 s. 100 s to 999					
	Accuracy	±(100 ppm + 20 ms) excluding Fall Time									

*1. Regarding the output time limits:

Taking size, weight, and cost into consideration, the heat dissipation capability of the voltage generator that is used for hipot tests has been designed to be one half that of the rated output. Use the TOS5300 Series within the following limits. If you use the product in a manner that exceeds these limits, the output section may overheat, and the internal protection circuits may be activated. If this happens, stop testing, and wait until the TOS5300 Series returns to its normal temperature.

10	50 mA < i ≤ 110 mA	Greater than or equal to the output time	30 min. max.
AC	$i \le 50 \text{ mA}$	Not necessary	Continuous output possible
DC	$5~\mathrm{mA} < \mathrm{i} \leq 11~\mathrm{mA}$	Greater than or equal to the output time	1 min. max.
DC	i ≤ 5 mA	Greater than or equal to the wait time (WAIT TIME)	Continuous output possible
	IC IC	$i \le 50 \text{ mA}$ $C = \frac{5 \text{ mA} < i \le 11 \text{ mA}}{5 \text{ mA} < i \le 11 \text{ mA}}$	$\frac{i \le 50 \text{ mA}}{C} = \frac{5 \text{ mA} < i \le 11 \text{ mA}}{C} = \frac{5 \text{ mA} < i \le 11 \text{ mA}}{C} = \frac{5 \text{ mA} < i \le 11 \text{ mA}}{C} = 1000000000000000000000000000000000000$

(Output time = voltage rise time + test time + voltage fall time)

*2. Regarding the test voltage waveform:

Waveform distortions may occur if an DUT whose capacitance is dependent on voltage (for example, an DUT that consists of ceramic capacitors) is connected as the load. However, if the test voltage is 1.5 kV, the effect of a capacitance of 1000 pF or less can be ignored. Because the product's high-voltage power supply uses the PWM switching method, if the test voltage is 500 V or less, the switching and spike noise proportions are large. The lower the test voltage, the greater the waveform is distorted.

*3. Regarding ammeter and judgment accuracy:

During AC hipot tests, current also flows in the stray capacitance of items such as the measurement leads and jigs. This current that flows in the stray capacitances is added to the current that flows in the DUT, and the sum of these currents is measured. Especially if you want to perform judgments with high sensitivity and accuracy, it is necessary to consider methods to limit the current that flows in these stray capacitances, such as by adding upper and lower limits.

Output voltage	1 kV	2 kV	3 kV	4 kV	5 kV
When using 350 mm long test leads that are suspended in air (TYP)	2 μΑ	4 μΑ	6 μΑ	8 μΑ	10 µA
When using the accessory, high test lead TL31-TOS (TYP)	16 μΑ	32 µA	48 μΑ	64 µA	80 µA

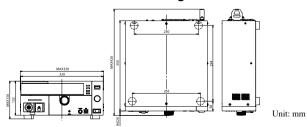
TOS5300 SERIES Hipot Tester/Hipot Tester with Insulation Resistance Test

Insulation Resistance Tester

							,	FOR 5202									
	Output voltag	10			25	V 50 V 100		FOS5302 250 V, 500 V, 1000	VDC (pag	ativa)							
	Output voitag	Accuracy			23	V, 30 V, 100			VDC (lieg	auve)							
	Max. rated lo	-	-0 %, +5 % 1 W (-1000 V DC / 1 mA)														
	Max. rated cu																
	Max. Taleu et	1000 V when no		1 mA													
Dutput	Ripple	load is connected					2 \	/p-p or less									
ection		Max. rated load						Vp-p or less									
	Voltage regul				1 %	or less (when	0 0	from maximum rat	ed load to i	no load)							
	Short-circuit							mA or less									
	Discharge fea					0	1	tion (discharge res	11								
	Limit voltage				ē	11		25 V, 50 V, 100 V,									
	Output voltag	e monitor feature	If output volt	age exceeds "]	10 % of set + 10	V" or is lower			output is t	urned off, and protect	tive feature	es are activated					
	A	Scale						V AC/DC f.s ± 5 % f.s									
	Analog	Accuracy				A.			1.								
7-14		Indication Measurement range		Average value response/rms scale 0 V to -1200 V													
Volt- neter		Measurement range	_				0 1	10-1200 v									
	Digital	Display		Measured	l voltage	V < 2	100 V	100 V ≤	V < 1000 V	/ 1000	V≤V						
	Digital	Display	_	Disp	olay		V										
		Accuracy					± (1 %	of rdng + 1 V)									
						0.03 MΩ =	≤ R ≤ 25 N	$1\Omega / \pm (2\% \text{ of rdng})$	+ 2 digits)								
		25 V						125 MΩ / ±5 % of									
								250 MΩ / ±10 % o	-								
		50 V						IΩ / ±(2 % of rdng 250 MΩ / ±5 % of									
		50 V						$500 \text{ M}\Omega / \pm 10 \% \text{ or}$	0								
								; 100 MΩ / ±2 % o	-								
		100 V		$100 \text{ M}\Omega < \text{R} \le 500 \text{ M}\Omega / \pm 5\% \text{ of rdng}$													
	Measurement range /		$500 \text{ M}\Omega < \text{R} \le 1 \text{ G}\Omega / \pm 10 \% \text{ of rdng}$														
	range / measurement accuracy *4 *5	125 V	$0.125 \text{ M}\Omega \leq R \leq 125 \text{ M}\Omega / \pm 2\% \text{ of rdng}$														
Resistance		123 V	$125 \text{ M}\Omega < R \le 625 \text{ M}\Omega / \pm 5 \% \text{ of rdng}$ $625 \text{ M}\Omega < R \le 1.25 \text{ G}\Omega / \pm 10 \% \text{ of rdng}$														
neter			$0.250 \text{ M}\Omega \le R \le 250 \text{ M}\Omega / \pm 2\% \text{ of rdng}$														
		250 V	$250 \text{ M}\Omega < R \le 1.25 \text{ G}\Omega / \pm 5\% \text{ of rdng}$														
			$1.25 \text{ G}\Omega < \text{R} \le 2.5 \text{ G}\Omega / \pm 10 \% \text{ of rdng}$														
		500 V	$\begin{array}{l} 0.50 \ \mathrm{M\Omega} \leq \mathrm{R} \leq 500 \ \mathrm{M\Omega} \ / \ \pm 2 \ \% \ \mathrm{of} \ \mathrm{rdng} \\ 500 \ \mathrm{M\Omega} < \mathrm{R} \leq 2.5 \ \mathrm{G\Omega} \ / \ \pm 5 \ \% \ \mathrm{of} \ \mathrm{rdng} \\ 2.5 \ \mathrm{G\Omega} < \mathrm{R} \leq 5 \ \mathrm{G\Omega} \ / \ \pm 10 \ \% \ \mathrm{of} \ \mathrm{rdng} \end{array}$														
		500 v															
		1000 1/		$1 \text{ M}\Omega \leq R < 1 \text{ G}\Omega / \pm 2\% \text{ of rdng}$													
		1000 V	$1 \text{ G}\Omega \le R \le 5 \text{ G}\Omega / \pm 5\% \text{ of rdng}$														
				< 1.00 MΩ	1.00 MΩ < R	< 10.0 MO	10.0 M	$\Omega \leq R < 100 M\Omega$	100.0 M	$\Omega \leq R < 1.00 \text{ G}\Omega$	1.00.60	≤ R ≤ 9.99 GΩ					
	Display *5				1.00 IVIS2 ≤ K			$\Box . \Box M\Omega$		$\square \square M\Omega$		$\leq K \leq 9.99 \text{ G}\Omega$					
Hold feat				Af	ter a test is finisl	,				5 judgment is cleared	l						
Current d	etection respon	se speed				Can be swite	hed betwe	en three levels: Fas	st, Mid, Slo	W							
			Judgment			Judgment	method			Display	Buzzer	SIGNAL I/O					
								upper limit is det				Generates					
			UPPER FAIL		ned off, and an uring voltage ris			occurs. This judgn		OVER is displayed on the screen	ON	a U-FAIL signal					
				1	0 0			wer limit is detect				Generates					
			LOWER FAIL							UNDER is displayed	ON	a L-FAIL					
		hod and judgment		and a LOW	ER FAIL judgme	ent occurs.				on the screen		signal					
	operation		D. 00	If the specif	ied time elapses	without any p	roblems, t	he output is turned	off,			Generates					
			PASS	and a PASS	judgment occur	s		•		PASS LED lights	ON	a PASS signa					
udgment			• IF PASS HOLD) is enabled th	e PASS signal i	s generated co	ntinuousl	until the TOS530	0 Series re	ceives a STOP signal	1						
eature			 If PASS HOLD is enabled, the PASS signal is generated continuously until the TOS5300 Series receives a STOP signal. The UPPER FAIL and LOWER FAIL signals are generated continuously until the TOS5300 Series receives a STOP signal. 														
			 The FAIL and PASS buzzer volume levels can be changed. For PASS judgments, the length of time that the buzzer sounds for is fixed to 0.2 seconds. Even if PASS HOLD is enabled, the buzzer turns off after 0.2 seconds. 														
					n of time that the l	buzzer sounds i	for is fixed	to 0.2 seconds. Even	if PASS HO	OLD is enabled, the but	zzer turns o	off after 0.2 seco					
				0.03 MΩ to 5.00 GΩ													
	Upper limit s		0.03 MΩ to 5.0								0.03 MΩ to 5.00 GΩ						
	Upper limit s Lower limit s		0.03 MΩ to 5.0 0.03 MΩ to 5.0) G <u>Ω</u>													
	Lower limit s	etting range	0.03 MΩ to 5.0 0.03 MΩ to 5.0 Measurement ac) GΩ curacy + 2 dig	·) No interfer		d by wobbly test le	ada or othe	r problems							
	Lower limit s Judgment acc	etting range	$\begin{array}{c} 0.03 \text{ M}\Omega \text{ to } 5.0 \\ 0.03 \text{ M}\Omega \text{ to } 5.0 \\ \end{array}$ Measurement ac Humidity: 20 %	O GΩ curacy + 2 dig rh to 70 %rh (i	no condensation			d by wobbly test le	ads or othe	er problems.							
	Lower limit s	etting range	$0.03 \text{ M}\Omega$ to 5.0 $0.03 \text{ M}\Omega$ to 5.0 Measurement ac Humidity: 20 % For judgments of	O GΩ curacy + 2 dig th to 70 %rh (f 200 nA or le	no condensation ss, a test time of	at least 1.0 se	conds is n			er problems.							
	Lower limit s Judgment acc (the same for	etting range	$0.03 \text{ M}\Omega \text{ to } 5.0$ $0.03 \text{ M}\Omega \text{ to } 5.0$ Measurement ac Humidity: 20 % For judgments of If the current de	$O G\Omega$ curacy + 2 dig th to 70 %rh (f 200 nA or le tection response	no condensation ss, a test time of se speed is set to	at least 1.0 se Mid, a test ti	conds is n me of at le	ecessary.	necessary.	er problems.							
	Lower limit s Judgment acc (the same for	uracy UPPER and	$0.03 \text{ M}\Omega \text{ to } 5.0$ $0.03 \text{ M}\Omega \text{ to } 5.0$ Measurement ac Humidity: 20 % For judgments of If the current de	$O G\Omega$ curacy + 2 dig th to 70 %rh (f 200 nA or le tection response	no condensation ss, a test time of se speed is set to	at least 1.0 se Mid, a test ti	conds is n me of at le	ecessary. ast 0.3 seconds is a	necessary.	er problems.							
Time	Lower limit s Judgment acc (the same for LOWER)	etting range uracy UPPER and ime	$\begin{array}{c} 0.03 \ \text{M}\Omega \ \text{to} \ 5.0 \\ 0.03 \ \text{M}\Omega \ \text{to} \ 5.0 \\ \text{Measurement ac} \\ \text{Humidity: } 20 \ \% \\ \text{For judgments o} \\ \text{If the current de} \\ \text{If the current de} \\ \text{If the current de} \\ 10 \ \text{ms} \ (\text{TYP}) \\ 0.1 \ \text{s to} \ 999 \ \text{s, c} \end{array}$	$O G\Omega$ curacy + 2 dig ch to 70 %rh () f 200 nA or le ection respon- ection respon-	no condensation ss, a test time of se speed is set to se speed is set to ff (TIMER OFF	at least 1.0 se Mid, a test ti Slow, a test t	conds is n me of at le	ecessary. ast 0.3 seconds is a	necessary.	er problems.							
Time	Lower limit s Judgment acc (the same for LOWER) Voltage rise t	uracy UPPER and	$\begin{array}{c} 0.03 \ \text{M}\Omega \ \text{to} \ 5.0 \\ 0.03 \ \text{M}\Omega \ \text{to} \ 5.0 \\ \text{Measurement ac} \\ \text{Humidity: } 20 \ \% \\ \text{For judgments o} \\ \text{If the current de} \\ \text{If the current de} \\ 10 \ \text{ms} \ (\text{TYP}) \end{array}$	$O G\Omega$ curacy + 2 dig th to 70 %rh (f 200 nA or le ection respon ection respon an be turned o O.1 s. 100 s to	no condensation ss, a test time of se speed is set to se speed is set to ff (TIMER OFF	at least 1.0 se Mid, a test ti Slow, a test t	conds is n me of at le	ecessary. ast 0.3 seconds is a	necessary.	er problems.							

Hipot Tester/Hipot Tester with Insulation Resistance Test

Other Features / Interfaces


		TOS5300	TOS5301	TOS5302				
Double action featur	e	Tests can only be started by pressing and releasing STOP and then pressing START within 0.5 seconds of releasing the STOP switch.						
Length of time to ma	aintain a PASS judgment result	You can set the length of time	e to maintain a PASS judgment: 50 ms, 100 ms,	200 ms, 1 s, 2 s,5 s, or HOLD.				
Momentary feature		Tests a	re only executed while the START switch is hel	ld down.				
Fail mode feature		This feature enables you to prevent rem	otely transmitted stop signals from clearing FA	IL judgments and PROTECTION modes.				
Timer feature		This	feature finishes tests when the specified time el	apses.				
Output voltage monit	for feature		ge exceeds "setting + 350 V" or is lower than " itches to PROTECTION mode, output is turned					
Memory		Up t	o three sets of test conditions can be saved to me	emory.				
Key lock		I	locks panel key operations (settings and change	s).				
Protective features		Under any of the following conditions, the TOS5300 Serie	s switches to the PROTECTION state, immediately turns output	t off, and stops testing. A message is displayed on the screen.				
Interlock I	Protection		An interlock signal has been detected.					
Power Sup	oply Protection	An error was detected in the power supply.						
Volt Error	Protection	While monitoring the output voltage, a voltage outside of the rated limits was detected. AC or DC hipot tests: ±350 V Insulation resistance test: ±(10 % of set + 10 V)						
Over Load	l Protection	During a withstanding voltage test, a value that is greater than or equal to the output limit power was specified. AC hipot test: 550 VA. DC hipot test: 55 VA.						
Over Heat	Protection	The internal temperature of the TOS5300 Series became too high.						
Over Ratin	ng Protection	During a withstanding voltage test, the output current was generated for a length of time that exceeds the regulated time.						
Calibration	n Protection	The specified calibration period has elapsed.						
Remote Pr	rotection	A connection to or disconnection from the front-panel REMOTE connector was detected.						
SIGNAL I	/O Protection	The rear-panel SIGNAL I/O connector's ENABLE signal has changed.						
USB Prote	ection	The USB connector has been disconnected while the TOS5300 Series was being controlled through the USB interface.						
System clock		Set in the following format: year/month/day hour/minutes/seconds.						
Calibration	n date	Set when the TOS5300 Series is calibrated.						
Calibration	period setting	Sets the period before the next calibration is necessary.						
Notification period elap	n of when the calibration uses	Sets the operation that is performed when the specified calibration period elapses. When the TOS5300 Series turns on, it can display a notification or switch to the protection mode and disable testing.						
	USB		USB Specification 2.0					
Interfaces	REMOTE	Front-panel 9-pin MINI DIN connector. By con	necting an optional device to this connector, you can	control the starting and stopping of tests remotely.				
	SIGNAL I/O		Rear-panel D-sub 25-pin connector					

General Specifications

-				TOS5300	TOS5301	TOS5302			
Display	Display			VFD: 256 × 64 dots + 4 status indicators					
Backup b	attery life				3 years (at 25 °C or 77 °F)				
	Installation	locati	on		Indoors, at a height of up to 2000 m				
	Spec guaran	teed	Femperature		5 °C to 35 °C (41 °F to 95 °F)				
Environ-	range	1	Humidity		20 %rh to 80 %rh (no condensation)				
ment	Operating ra	nga	Femperature		0 °C to 40 °C (32 °F to 104 °F)				
ment	Operating 12	linge 1	Humidity		20 %rh to 80 %rh (no condensation)				
	Storage rang	r	Femperature		-20 °C to 70 °C (-4 °F to 158 °F)				
	Storage rang	³⁰ 1	Humidity	90 %rh or less (no condensation)					
	Nominal volt	age ran	ge (allowable voltage range)	100 VAC to 240 VAC (90 VAC to 250 VAC)					
Power	Power	When n	o load is connected (READY)	100 VA or less					
supply	consumptio	When a	rated load isconnected	800 VA max.					
	Allowable	reque	ncy range	47 Hz to 63 Hz					
Insulation	resistance (bet	ween A	C LINE and the chassis)	30 MΩ or more (500 VDC)					
Withstand	ing voltage (be	tween.	AC LINE and the chassis)	1390 VAC, 2 seconds, 20 mA or less					
Earth con	tinuity			25 AAC, 0.1 Ω or less					
Safety (Do	es not apply to specia	lly ordere	d or modified TOS5300 Series testers.)	Complies with the requirements of the following directive and standard. Low Voltage Directive 2006/95/EC, EN 61010-1 Class I Pollution degree					
Electromagnetic compatibility (EMC) (Does not apply to specially ordered or modified TOS5300 Series testers.) (Limited to products that have the CE mark on their panels.)			dified TOS5300 Series testers.)	Complies with the requirements of the following directive and standard. EMC Directive 2004/108/EC, EN 61326-1, EN 61000-3-2, EN 61000-3-3 Applicable under the following conditions The maximum length of all cabling and wiring connected to the TOS5300 Series must be less than 3 m. The high test lead TL31-TOS is being used. Electrical discharges are not occurring outside the DUT.					
Dimensio	Dimensions			320[12.60 inch] (330[12.99 inch]) W × 132[5.20 inch] (150[5.19 inch]) H × 350[13.78 inch] (420[16.54 inch]) D mm					
Weight				Approx. 14 kg (Approx. 30.9 lbs.)	Approx. 15 kg (Approx. 33.1 lbs.)	Approx. 14 kg (Approx. 30.9 lbs.)			
Accessori	ies				(TL31-TOS) : 1set (1 red wire and 1 black wire type / High-voltage warning sticker : 1pc. / Us				

*6.Contains the User's Manual, the Communication Interface Manual, the KI-VISA library, and the Safety evalution test.

—External dimensional diagrams —

Hipot Tester/Hipot Tester with Insulation Resistance Test

Compact & low cost model

TOS8030

Compact model for the simplified test

TOS8030 is a withstanding voltage tester of 3kV/10mA. This machine is compact and light, however, capable of judgeing 0.1 mA -10 mA and 0.1mA resolutions, and is equipped with a timer function, signal output, remote terminal, etc.

* Since TOS8030 is for simplified tests, it may not conform to safety standards.

(This can be used for voluntary tests under the Electrical Appliances and Material Safety Law (PSE).)

- Withstanding Voltage: AC 3kV/100 mA
- Compact and lightweight (approx. 6 kg)
- Digital timer (0.5 to 9.9 s; 1 to 99 s, Resolution: 0.1 s)
- Judgment range: 0.1 mA to 10 mA
- Zero turn-on switch
- Safety-conscious high-voltage output terminal and large DANGER lamp
- Remote control function
- Output of contact point signals such as PASS and FAIL

)\$8030

Hipot Tester/Hipot Tester with Insulation Resistance Test

- The specifications are based on the following conditions and settings, unless otherwise specified. Warm-up time: 30 minutes Temperature: 5°C to 35°C Relative humidity: 20% to 80% (with no dew condensation)
- "xx% of reading" represents xx% of voltmeter (or resistance meter) reading.

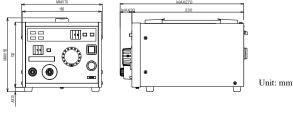
Hipot Tester

Item	TO\$8030
Output block	
Output voltage range	0.05 kV to 3.00 kV/single range
Maximum rated load (*1)	30 VA (3 kV/10 mA) (at a nominal input rating)
Output voltage waveform (*2)	AC line waveform
Voltage regulation	20% or less (during transition from the maximum rated load to no-load)
Switching	A zero-start switch is used.
Voltmeter	
Measurement range	0.00 kV to 4.00 kV (Display resolution 10 V)
Accuracy	± 1.5% FS or Vm ≥ 1.00 kV: ± (5% of reading),Vm < 1.00 kV: ± (5% of reading + 30 V) – whichever is smaller.where FS: full scale (4.00 kV), Vm: measured voltage value
Response	Mean value response/rms value indication
Judgment function	
Judgment method	Compares the reference values and measured leakage current. The result is returned as a PASS or FAIL.
Upper reference limit	x0.1 mA range: Can be set from 0.1 mA to 9.9 mA in 0.1 mA steps. x1 mA range: Can be set from 1 mA to 11 mA in 1 mA steps.
Lower reference limit	-
Judgment accuracy (*3)	Iref ≥ 1 mA: $\pm (5\% + 20 \mu A)$, Iref < 1 mA: $\pm (5\% + 40 \mu A)$ Iref: Reference value
Time	
Test time	x0.1 s range: 0.5 s to 9.9 s, x1 s range: 1 s to 99 s (The TIMER OFF function provided), Resolution : x0.1 s range: 0.1 s, x1 s range: 1 s, Accuracy : -0 ms, +50 ms

*1 : Time limitations on the output

The heat radiation capacity of the output voltage generator section of the tester is designed to be 1/2 of the rated output, in consideration of the instrument dimensions, weight, costs, and other factors. The tester, therefore, must be used under the following time constraints (interval time and output time). If used beyond these limits, the output section may overheat, activating the internal protection circuit. In such cases, always halt testing for a duration equal to or greater than the test duration.

*2 : Test voltage waveform If AC voltage is applied to a capacitive load, the output voltage in certain cases may rise above the value at no-load, depending on the value of the capacitive element of the load. Moreover, for samples whose capacitance values show voltage dependency (as with ceramic capacitors), waveform distortions may result. However, for a test voltage of 1.5 kV, the effects of a capacitance of 1000 pE or less may be ignored


of 1000 pF or less may be ignored. *3 : In an AC hipot test, a current also flows in stray capacities such as measurement leads and devices. The approximate current values flowing in these stray capacities are as

shown in the table below. *4 : When the lower reference value is 1/2 of the upper reference limit (i.e., the variable resistor is turned fully clockwise). No calibration is made for other values.

Other Functions / General Specifications

Item	TOS8030
Remote control	
Connector	5-pin DIN connector on the rear panel
Optional devices connectable	Remote control boxes: RC01-TOS and RC02-TOS / High-voltage test probes: HP01A-TOS and HP02A-TOS
Signal I/O	
Connector (Status signal output)	14-pin screw-less terminal on the rear panel (Output of a READY signal / H.V ON signal / PASS signal / FAIL signal/ PROTECTION signal)
Environment	
Operation environment	Indoor use, Altitude : Up to 2000 m
Temperature	Specificationsassured range : 5°C to 35°C, Operating range : 0°C to 40°C, Storage range : -40°C to 70°C
Relative humidity	Specificationsassured range, Operating range : 20% to 80% (with no dew condensation), Storage range : 90% or less (with no dew condensation)
General Specifications	
Nominal input rating(Input voltage range)	220 V(200 V to 240 V),120 V(110 V to 130 V), or 100 V(90 V to 110 V), 50 Hz or 60 Hz
Power consumption	At no-load (in READY state) 50 VA or less
At rated load	45 VA maximum
Insulation resistance	AC INPUT to chassis 30 M Ω or more (at 500 Vdc)
Withstand voltage	AC INPUT to chassis 10 mA or less when 1390 Vac is applied for 2 seconds
Ground bond	25 Aac/0.1 Ω or less
Dimensions (maximum)	160 [6.30 inch](170[6.69 inch]) W × 132 [5.20 inch] (155[6.10 inch]) H × 230[9.06 inch] (270[10.63 inch]) D mm
Weight	Approx. 6 kg(Approx.13.23 lbs)
Standard accessories	High-voltage test leads TL01C-TOS (approx. 1.5 m): 1 set , Power cord: 1 , INTERLOCK jumper: 1 , Operation Manual: 1 copy

External dimensional diagrams-

Basic model series with excellent cost performance

TOS5101(ACW/DCW)

High-end model of TOS series having AC, DC10kV output Conforming to demands of various component standards testing and margin test

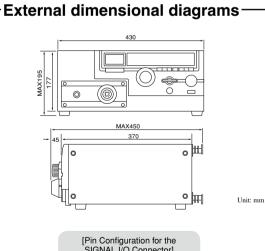
TOS5101 is designed exclusively for withstand voltage testing of electronic equipment and components conforming to various safety standards. The use of a high luminance, large fluorescent display tube for the display enables data including measured values, status and judgment results to be extremely legible. The PASS/FAIL function employs a window comparator method that enables TOS5101 to make fail judgment of current leakage over the upper reference value and below the lower reference value which can be set on the front panel. Thus, highly reliable testing can be performed including that for test lead disconnection and defective contact. In addition, in order to prevent erroneous operation and accidents, the TOS5101 is also equipped with a Key Lock function and Interlock function, a highvoltage output terminal having a narrowed insertion port, a large DANGER lamp, and an automatic discharge function (during DC operation) that removes charge from the test piece. These features give the TOS5101 a high degree of safety and reliability.

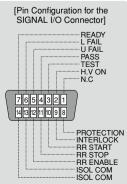
*In general, when the capacitance of DUT has a voltage dependence (such as a "High-dielectric constant ceramic capacitor"), please take a caution that the waveform distortion may occurs.

- Complies with various safety standards
- AC/DC output (0 to 10 kV)
- Large color display
- Digital voltmeter and ammeter
- Digital timer
- Window comparator type employed for PASS / FAIL judgement.
- Equipped with remote control function
- Various signal outputs
- Automatic discharge function (during DC operation)
- Provided with zero turn-on switch
- Compact size

T(**Hipot Tester**

Applied Voltage 0 to 5/ 0 to 10 kV AC and DC AC Maximum Rated*1 500VA / 10 kV, 50 mA Waveform Commercial line waveform Voltage Regulation Max. 15% (for max. rated load to no load) Switching Use of a zero turn-on switch DC Applied Voltage Applied Voltage S0W / 10 kV, 5m A Ripple 100 Vp-p typ. at 10 kV, no load 200 Vp-p typ. at max. rated load to no load) Maximum Rated*1 Max. 35% (for max. rated load to no load) Output Voltmeters	Output block					
AC Maximum Rated*1 500VA / 10 kV, 50 mA Maximum Rated*1 Commercial line waveform Voltage Regulation Max. 15% (for max. rated load to no load) Switching Use of a zero turn-on switch DC			0 to 5/0 to 10 kV AC and DC			
Waveform Commercial line waveform Voltage Regulation Max. 15% (for max. rated load to no load) Switching Use of a zero turn-on switch DC Applied Voltage Applied Voltage 50W / 10 kV, 5 mA Ripple 100 Vp-p typ. at max. rated output Maximum Rated*1 Max. 3% (for max. rated load to no load) Output Voltmeters Max. 3% (for max. rated load to no load) Analog Scale 10 kV full scale , AC/DC Class JIS Class 2.5 Accuracy Accuracy ±5% of full scale AC Indication Mameter Max. avalue response / ms value cale AC Response Manmeter Accuracy ±1.5% of full scale Ac Response Mean value response / ms value display Max Yes of a use response / ms value display Pass/fail Judgement Function Window comparator type FAIL igdgement machest in the sclapsed and no abnormality i detected Vibre or cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range			1			
Voltage Regulation Max. 15% (for max. rated load to no load) Switching Use of a zero turn-on switch DC Applied Voltage Ripple 100 Vp-p typ. at 10 kV, 5 mA Maximum Rated*1 Max. 3% (for max. rated output Max. 15% of full scale AC/DC Accuracy ±1.5% of full scale Accuracy ±1.5% of full scale Accuracy ±(5% + 20µA) of upper cutoff current Digital Accuracy ±(5% + 20µA) of upper cutoff current Type of Judgement Function Window comparator type FAIL judgement Ywhen current detected above upper cutoff current *When current detected above upper cutoff current *When current detected above upper cutoff current *When current detected above upper cutoff current setting range AC: 0.1 to 55 mA DC:	Maximum Rated*1		500VA / 10 kV, 50 mA			
Switching Use of a zero turm-on switch Applied Voltage 50W / 10 kV, 5 mA Applied Voltage 100 Vp-p typ. at 10 kV, no load 200 Vp-p typ. at nax. rated output Maximum Rated*1 Max. 3% (for max. rated load to no load) Output Voltmeters Analog Scale 10 kV full scale, AC/DC Class JIS Class 2.5 Accuracy Accuracy ±5% of full scale AC Indication Mean value response / rms value scale Digital Full Scale 5 kV / 10 kV full scale Accuracy ±15% of full scale AC Response Mean value response / rms value display Ammeter Use of a zero turn-or type FAIL judgement function Window comparator type Type of Judgement Function Window comparator type FAIL judgement mak) PASS judgement nak) PyPs of Judgement Function Window comparator type FAIL judgement mak) PASS judgement nak) Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Indgement + 20µA) Urper cutoff current	Waveform		Commercial line waveform			
DC Applied Voltage 50W / 10 kV, 5 mA Ripple 100 Vp-p typ. at 10 kV, no load 200 Vp-p typ. at 10 kV, no load 200 Vp-p typ. at max. rated output Maxinum Rated*1 Max. 3% (for max. rated load to no load) Output Voltmeters 400 Vp-p typ. at max. rated load to no load) Analog Scale 10 kV full scale .AC/DC Class JIS Class 2.5 Accuracy Accuracy 4.5% of full scale AC Robication Mean value response / ms value scale Digital AC Response Mean value response / ms value display Ammeter 4C Response Mean value response / ms value display Mean value response / ms value display Type of Judgement Accuracy ±(5% + 20µA) of upper cutoff current / AC Response Mean value response / ms value display Type of Judgement Wiedow comparator type •FAIL judgement •FAIL judgement "When current detected above upper cutoff current *When current detected above upper cutoff current *When current detected above upper cutoff current *UpA) • PASS judgement Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Low • PASS judgement *When current detected above upper cutoff current *UhA) Current Detection Int	Voltage Regulation		Max. 15% (for max. rated load to no load)			
DC SOW / 10 kV, 5 mA Ripple 100 Vp-p typ. at 10 kV, no load 200 Vp-p typ. at 10 kV, no load 200 Vp-p typ. at max. rated output Maximum Rated*1 Max. 3% (for max. rated load to no load) Output Volmeters Max. 3% (for max. rated load to no load) Analog Scale 10 kV full scale _ AC/DC Class JIS Class 2.5 Accuracy ±5% of full scale AC Indication Mean value response / ms value scale Digital Full Scale 5 kV / 10 kV full scale Accuracy ±1.5% of full scale Accuracy AC Response Mean value response / ms value display Ammeter Mean value response / ms value display Type of Judgement Function Window comparator type ●FAL judgement "When current detected above upper cutoff current *When current detected below lower cutoff current *When current detected below lower cutoff current *When current detected below lower cutoff current *When current detected above upper cutoff current *When current detected above upper value, value value, va	Switching		Use of a zero turn-on switch			
Ripple 100 Vp-p typ. at max. rated output Maximum Rated*1 Max. 3% (for max. rated load to no load) Output Voltmeters Max. 3% (for max. rated load to no load) Analog Scale 10 kV full scale, AC/DC Class IIS Class 2.5 Accuracy Accuracy ±5% of full scale AC Indication Mean value response / rms value scale Accuracy ±1.5% of full scale Accuracy ±1.5% of full scale Accuracy Accuracy ±1.5% of full scale Maxinguement Function Window comparator type Type of Judgement Function Window comparator type FALI judgement function Window comparator type Verait detected block lower cutoff current (FALI signal generate when FALI judgement mac) Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lo	-		1			
Ripple 100 Vp-p typ. at max. rated output Maximum Rated*1 Max. 3% (for max. rated load to no load) Output Voltmeters Max. 3% (for max. rated load to no load) Analog Scale 10 kV full scale, AC/DC Class IIS Class 2.5 Accuracy Accuracy ±5% of full scale AC Indication Mean value response / rms value scale Accuracy ±1.5% of full scale Accuracy ±1.5% of full scale Accuracy Accuracy ±1.5% of full scale Maxinguement Function Window comparator type Type of Judgement Function Window comparator type FALI judgement function Window comparator type Verait detected block lower cutoff current (FALI signal generate when FALI judgement mac) Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lo	Applied Voltage		50W / 10 kV, 5 mA			
200 Vp-p typ. at max. rated output Maximum Rated*1 Max. 3% (for max. rated load to no load) Output Voltmeters Max. 3% (for max. rated load to no load) Analog Scale 10 kV full scale , AC/DC Class JIS Class 2.5 Accuracy Accuracy ±5% of full scale AC Indication Mean value response / rms value scale Digital Full Scale 5 kV/ 10 kV full scale Accuracy ±1.5% of full scale Maxing and the response / rms value display Pass/fail Judgement Function Window comparator type Type of Judgement Window comparator type • FAL judgement * When current detected bow lower cutoff current *When current detected bow lower cutoff current *When current detected bow lower cutoff current *UpuA) Quegement Accuracy ±2% of upper cutoff current +20µA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±2% of upper cutoff current +20µA Judgement Accuracy <td></td> <td></td> <td>100 Vp-p typ. at 10 kV, no load</td>			100 Vp-p typ. at 10 kV, no load			
Maximum Rated*1 Max. 3% (for max. rated load to no load) Output Voltmeters						
Output Voltmeters Scale 10 kV full scale , AC/DC Class JIS Class 2.5 Accuracy ±5% of full scale Accuracy ±5% of full scale Accuracy ±1.5% of full scale Digital Full Scale 5 kV/10 kV full scale Accuracy ±1.5% of full scale Accuracy ±1.5% of full scale Accuracy ±1.5% of full scale Accuracy Accuracy ±1.5% of full scale Accuracy ±1.5% of full scale Accuracy Accuracy ±1.5% of full scale Accuracy ±1.5% of full scale Accuracy Accuracy ±1.5% of full scale Accuracy #1.5% of full scale Accuracy Accuracy ±0.5% response Mean value response / rms value display Mean value response / rms value display Pass/fail Judgement Function Window comparator type FAIL judgement #When current detected below lower cutoff current *When current detected below lower cutoff current *DuA) Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 55 mA	Maximum Rated*1					
Analog Scale 10 kV full scale , AC/DC Class JIS Class 2.5 Accuracy ±5% of full scale AC Indication Mean value response / rms value csale Digital Full Scale 5 kV/ 10 kV full scale Accuracy ±1.5% of full scale Accuracy ±1.5% + 20µA) of upper cutoff current Accuracy ±1.5% + 20µA) of upper cutoff current Pass/fail Judgement Function Window comparator type Type of Judgement Window comparator type •FALL judgement *When current detected above upper cutoff current *When current detected when FALL judgement mate) •PASs judgement *When set time has clapsed and no abnormality in detected Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC:						
Class JIS Class 2.5 Accuracy ±5% of full scale AC Indication Mean value response / rms value scale Digital Full Scale 5 kV/ 10 kV full scale Accuracy ±1.5% of puper cutoff current AC Response Mean value response / rms value display Pass/fail Judgement Function Window comparator type "FALL judgement "Window current detected below lower cutoff current withen current detected below lower cutoff current made) PASS judgement "When current detected below lower cutoff current withen thate alapsed and no abnormality in detected Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 55 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 55 mA Judgement Accuracy ±(5% of upper cutoff current ±20µA) Current Detection Integration of current absolute value followed by comparison with reference value. Calib		Scale	10 kV full scale . AC/DC			
Accuracy $\pm 5\%$ of full scaleAcAccuracy $\pm 1.5\%$ of full scaleACIndicationMean value response / rms value scaleDigitalFull Scale $5V/10V$ full scaleAC responseMean value response / rms value displayAmmeter $\pm 1.5\%$ of full scaleDigitalAccuracy $\pm (5\% + 20\mu\Lambda)$ of upper cutoff currentAC ResponseMean value response / rms value displayPass/fail Judgement FunctionWindow comparator typType of Judgement Function"When current detected above upper cutoff current "When current detected blow lower cutoff current (FAL signal generated when FAL judgement made)• PASS judgement*When set time has elapsed and no abnormality in detectedUpper cutoff current setting rangeAC: 0.1 to 55 mA DC: 0.1 to 5.5 mALower cutoff current setting rangeAC: 0.1 to 55 mA DC: 0.1 to 5.5 mALower cutoff current setting rangeAC: 0.1 to 55 mA DC: 0.1 to 5.5 mALower cutoff current setting rangeApprox. 160 V when set to 50 mA ACCurrent DetectionIntegration of current absolute value followed by comparison with reference value.CalibrationWith rms value of sine wave using a pure resistance load.No-load output voltage required for detectionApprox. 160 V when set to 50 mA ACAccuracy ± 20 msLine Voltage100V±10%, 50%0H Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.)Power Requirements/Approx. 600 VA at rated loadfor line voltage of 100 VMax. 50 VA under no-load conditions/Approx. 600 VA at r	8					
AC Indication Mean value response / rms value scale Digital Full Scale 5 kV/ 10 kV full scale Accuracy ±1.5% of full scale AC Response Mean value response / rms value display Ammeter ±(5% + 20µA) of upper cutoff current AC Response Pass/fail Judgement Function Window comparator type •FAIL judgement •FAIL judgement *When current detected below lower cutoff current frAL signal generated when FAIL judgement made) • PASS judgement •PASS judgement •Kindow comparator type •FAIL judgement *When current detected below lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value fol- lowed by comparison with reference value. Calibration With ms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 160 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC: 0.5 to 999 sec (±10 ms) (timer-off function provided) Accuracy ±20 ms Line voltage of 10		-				
Digital Full Scale 5 kV/ 10 kV full scale Accuracy ±1.5% of full scale AC Response Mean value response / rms value display Ammeter ±(5% + 20µA) of upper cutoff current AC Response Mean value response / rms value display Pass/fail Judgement Function Window comparator type Type of Judgement Window comparator type ●FAIL judgement •FAIL judgement When current detected below lower cutoff current when extrement detected below lower cutoff current setting range Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Calibration Integration of current absolute value followed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 160 V when set to 5 mA DC Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 100 V <		-				
Accuracy ±1.5% of full scale AC Response Mean value response / rms value display Ammeter ±(5% + 20µA) of upper cutoff current AC Response Mean value response / rms value display Pass/fail Judgement Function Window comparator type Type of Judgement ●FALI judgement Window comparator type ●FALI judgement When current detected below lower cutoff current texting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current asolute value fol- lowed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx.160 V when set to 50 mA AC Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V±10%, 50/60 Hz (Nominal voltages of 110V±10%, 50/60 Hz (Nominal voltages of 110V±10%, 50/60 VA at rated load for line voltage of 100 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load for line voltage of 100 V to 200 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load <td>Digital</td> <td></td> <td>· ·</td>	Digital		· ·			
AC Response Mean value response / rms value display Ammeter AC Response Mean value response / rms value display Pass/fail Judgement Function Window comparator type •FAIL judgement Type of Judgement Function •Window comparator type •FAIL judgement •When current detected above upper cutoff current *When current detected below lower cutoff current *When current detected below lower cutoff current *When set ime has elapsed and no abnormality in detected Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value fol- lowed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 160 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC To 5.9 (MOR) Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V avail- able as factory options.) Power Requirements ////////////////////////////////////	Digitai					
Ammeter Digital Accuracy ±(5% + 20µA) of upper cutoff current AC Response Mean value response / rms value display Pass/fail Judgement Function Window comparator type ●FAIL judgement ●FAIL judgement *When current detected below lower cutoff current *When current detected below lower cutoff current (FAIL signal generated when FAIL judgement made) ● PASS judgement • PASS judgement *When set time has elapsed and no abnormality in detected Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value followed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 160 V when set to 50 mA AC Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements /Approx. 600 VA at rated load for line voltage of 100 V to 200 V Max. 50 VA under no-load conditions /Approx. 60						
Digital Accuracy ±(5% + 20µA) of upper cutoff current AC Response Mean value response / rms value display Pass/fail Judgement Function Window comparator type Type of Judgement ●FAIL judgement *When current detected above upper cutoff current '*When current detected below lower cutoff current '*When current detected when FAIL judgement made) ● PASS judgement ● PASS judgement *When set time has elapsed and no abnormality in detected Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value fol-lowed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 970 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC: 50.5 mA DC: Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements // Approx. 600 VA at rated load for line voltage of 100 V Max. 50 VA under no-load condititons // A	Ammotor	AC Response	Weah value response / This value display			
AC Response Mean value response / rms value display Pass/fail Judgement Function Window comparator type Type of Judgement Window comparator type FAIL judgement *When current detected above upper cutoff current *When current detected babove upper cutoff current (FAIL signal generated when FAIL judgement made) PASS judgement *When set time has elapsed and no abnormality is detected Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value fol-lowed by comparison with reference value. Calibration With ms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 970 V when set to 50 mA AC Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements ////////////////////////////////////		Accuracy	$\pm (5\% \pm 20\mu \text{ A})$ of upper outoff ourset			
Pass/fail Judgement Function Window comparator type FAIL judgement Window comparator type FAIL judgement Window comparator type When current detected above upper cutoff current *When current detected babove upper cutoff current When current detected babove upper cutoff current *When current detected babove upper cutoff current (FAIL signal generated when FAIL judgement made) • PASS judgement (FASS judgement) *When set time has elapsed and no abnormality in detected (Lower cutoff current setting range) AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value followed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 970 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC: 0.5 to 999 sec (±10 ms) (timer-off function provided) Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V; 220V, 230V and 240V available as factory options.) Power Requirements /Approx. 600 VA at rated load for line voltage of 100 V Max. 50 VA under no-load conditions	Digital					
Type of Judgement Window comparator type •FAIL judgement *When current detected above upper cutoff current *When current detected below lower cutoff current *When set time has elapsed and no abnormality in detected •PASS judgement *When set time has elapsed and no abnormality in detected Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value (AD) lowed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 970 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC 5 to 999 sec (±10 ms) (timer-off function provided) Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements /Approx. 600 VA at rated load for line voltage of 100 V Max. 50 VA under no-load conditions /Approx. 610 VA at rated load /Approx. 610 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions	Doce/foil Inderson 1		wican value response / rins value display			
b FAIL judgement *When current detected above upper cutoff current *When current detected below lower cutoff current *When current detected below lower cutoff current *When set time has elapsed and no abnormality in detected Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value fol- lowed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 160 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC The Vitage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements for line voltage of 100 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load // Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610	-	r uncuon	Window comparator type			
*When current detected below lower cutoff current (FAIL signal generated when FAIL judgement made) • PASS judgement *When set time has elapsed and no abnormality in detected Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value fol- lowed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 970 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC 0.5 to 999 sec (±10 ms) (timer-off function provided) Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V avail- able as factory options.) Power Requirements /Approx. 600 VA at rated load for line voltage of 100 V Max. 50 VA under no-load conditions /Approx. 610 VA at rated load /Approx. 610 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions /Approx. 610 VA at rated load /Approx. 610 VA at rated load Electromagnetic compatibility (EMC) *3 Conforms to the requireme	Type of Judgement		1 11			
(FAIL signal generated when FAIL judgement made) • PASS judgement *When set time has elapsed and no abnormality in detected Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value followed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 160 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC 0.5 to 999 sec (±10 ms) (timer-off function provided) Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements /Approx. 600 VA at rated load for line voltage of 100 V to 200 V Max. 50 VA under no-load conditions /Approx. 610 VA at rated load /Approx. 610 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions /Approx. 610 VA at rated load EN61000-3-2 EN61000-3-2 EN61000-3-3 Under following conditions I. Used HV test leadwires w						
● PASS judgement *When set time has elapsed and no abnormality is detected Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value fol-lowed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 970 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC O.5 to 999 sec (±10 ms) (timer-off function provided) Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements //Approx. 600 VA at rated load for line voltage of 100 V Max. 50 VA under no-load conditions //Approx. 610 VA at rated load //Approx. 610 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions //Approx. 610 VA at rated load Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61000-3-2 EN61000-3-2 EN61000-3-3 Under fol			*When current detected below lower cutoff current			
*When set time has elapsed and no abnormality in detected Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value fol- lowed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 970 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC Ot to 5.5 mA DC Test Time Setting Range 0.5 to 999 sec (±10 ms) (timer-off function provided) Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V avail- able as factory options.) Power Requirements / for line voltage of 100 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load / for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load / for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load /						
detected Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value fol- lowed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 970 V when set to 50 mA AC Approx. 160 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC Test Time Setting Range 0.5 to 999 sec (±10 ms) (timer-off function provided) Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V avail- able as factory options.) Power Requirements // Approx. 600 VA at rated load for line voltage of 100 V Max. 50 VA under no-load conditions // Approx. 610 V to 220 V Max. 50 VA under no-load conditions // Approx. 610 VA at rated load // Approx. 610 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions // Approx. 610 VA at rated load // Approx. 610 VA at rated load Electromagnetic compatib						
Upper cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value fol- lowed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 970 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC Test Time Setting Range 0.5 to 999 sec (±10 ms) (timer-off function provided) 220 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V avail- able as factory options.) Power Requirements // Approx. 600 VA at rated load for line voltage of 100 V Max. 50 VA under no-load conditions // Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load Conforms to the requirements of the following directive and standard.*2 ENG1000: 3-2 ENG1000: 3-3 Under following conditions 1. Used HV test leadwires which is						
Lower cutoff current setting range AC: 0.1 to 55 mA DC: 0.1 to 5.5 mA Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value followed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 970 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC Test Time Setting Range 0.5 to 999 sec (±10 ms) (timer-off function provided) ±20 ms Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements Max. 50 VA under no-load conditions for line voltage of 100 V Max. 50 VA under no-load conditions / Approx. 600 V At rated load /Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 V At rated load /Approx. 610 VA at rated load Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN611000-3-2 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires whi	Upper cutoff current	setting range				
Judgement Accuracy ±(5% of upper cutoff current + 20µA) Current Detection Integration of current absolute value followed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 970 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC Test Time Setting Range 0.5 to 999 sec (±10 ms) (timer-off function provided) ±20 ms Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements Max. 50 VA under no-load conditions for line voltage of 100 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load Max. 50 VA under no-load conditions for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load Test Time sto the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC ENG1000-3-2 ENG1000-3-2 ENG1000-3-3 Under following conditions 1. Used HV test leadwires which is						
Current Detection Integration of current absolute value fol- lowed by comparison with reference value. Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 970 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC Test Time Setting Range 0.5 to 999 sec (±10 ms) (timer-off function provided) Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V avail- able as factory options.) Power Requirements Max. 50 VA under no-load conditions / Approx. 600 VA at rated load for line voltage of 100 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load Test Tors to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is						
Investigation Investigation Investigation Investinter Investigation </td <td></td> <td></td> <td></td>						
Calibration With rms value of sine wave using a pure resistance load. No-load output voltage required for detection Approx. 970 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC Test Time Setting Range 0.5 to 999 sec (±10 ms) (timer-off function provided) Accuracy Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements Max. 50 VA under no-load conditions for line voltage of 100 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load /Approx. 610 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load /Approx. 610 VA at rated load Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is	Current Detection		-			
resistance load. No-load output voltage required for detection Approx. 970 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC Test Time Setting Range 0.5 to 999 sec (±10 ms) (timer-off function provided) Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements Max. 50 VA under no-load conditions for line voltage of 100 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load /Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load /Approx. 610 VA at rated load Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive 89/336/EEC ENC Directive 89/336/EEC ENG1000-3-2 ENG1000-3-3 Under following conditions 1. Used HV test leadwires which is 1. Used HV test leadwires which is	Calibration					
No-load output voltage required for detection Approx. 970 V when set to 50 mA AC Approx. 160 V when set to 5 mA DC Approx. 160 V when set to 5 mA DC Test Time Setting Range 0.5 to 999 sec (±10 ms) (timer-off function provided) Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements for line voltage of 100 V for line voltage of 100 V to 200 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load /Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is	Canoration					
Approx. 160 V when set to 5 mA DC Test Time Setting Range 0.5 to 999 sec (±10 ms) (timer-off function provided) Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements max. 50 VA under no-load conditions for line voltage of 100 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load // Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load // Approx. 610 VA at rated load Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN611026 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is	No lood output voltoo	a required for detection				
Test Time Setting Range 0.5 to 999 sec (±10 ms) (timer-off function provided) Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements max. 50 VA under no-load conditions for line voltage of 100 V Max. 50 VA under no-load conditions for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions for line voltage of 220 V to 240 V Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is	No-load output voltage	e required for detection				
Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements for line voltage of 100 V for line voltage of 100 V to 200 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load for line voltage of 220 V to 240 V for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load for line voltage of 220 V to 240 V Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is	T . T C D					
Accuracy ±20 ms Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements for line voltage of 100 V for line voltage of 100 V to 200 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load / Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load / Approx. 610 VA at rated load Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is	Test Time Setting Ra	nge				
Line Voltage 100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements for line voltage of 100 V Max. 50 VA under no-load conditions for line voltage of 100 V to 200 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is						
110V, 120V, 220V, 230V and 240V available as factory options.) Power Requirements for line voltage of 100 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load // Approx. 600 VA at rated load for line voltage of 100 V to 200 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load // Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load // Approx. 610 VA at rated load Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is						
able as factory options.) Power Requirements for line voltage of 100 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load for line voltage of 100 V to 200 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is	Line Voltage					
Power Requirements Max. 50 VA under no-load conditions for line voltage of 100 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load Max. 50 VA under no-load conditions for line voltage of 100 V to 200 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load Max. 50 VA under no-load conditions for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is						
for line voltage of 100 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load for line voltage of 100 V to 200 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is			able as factory options.)			
/ Approx. 600 VA at rated load for line voltage of 100 V to 200 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load / Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load / Approx. 610 VA at rated load Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is			1			
for line voltage of 100 V to 200 V Max. 50 VA under no-load conditions / Approx. 600 VA at rated load / Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load / Approx. 610 VA at rated load Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is	for line voltage of 10	00 V				
/ Approx. 600 VA at rated load for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is						
for line voltage of 220 V to 240 V Max. 50 VA under no-load conditions / Approx. 610 VA at rated load Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is	for line voltage of 10	0 V to 200 V	Max. 50 VA under no-load conditions			
/ Approx. 610 VA at rated load Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is			/ Approx. 600 VA at rated load			
Electromagnetic compatibility (EMC) *3 Conforms to the requirements of the following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is	for line voltage of 22	20 V to 240 V	Max. 50 VA under no-load conditions			
following directive and standard.*2 EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is			/ Approx. 610 VA at rated load			
EMC Directive 89/336/EEC EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is	Electromagnetic com	npatibility (EMC) *3	Conforms to the requirements of the			
EN61326 EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is			following directive and standard.*2			
EN61000-3-2 EN61000-3-3 Under following conditions 1. Used HV test leadwires which is			EMC Directive 89/336/EEC			
EN61000-3-3 Under following conditions 1. Used HV test leadwires which is			EN61326			
Under following conditions 1. Used HV test leadwires which is			EN61000-3-2			
1. Used HV test leadwires which is			EN61000-3-3			
			Under following conditions			
supplied			1. Used HV test leadwires which is			
supplied.			supplied.			
2. No discharge in testing.						
3. Used the shielded cable which length is			3. Used the shielded cable which length is			
less than three meters when the						
SIGNAL I/O is used.			less than three meters when the			


Safty *3	Conforms to the requirements of the follow ing directive and standard. *2,4		
	Low Voltage Directive 73/23/EEC		
	EN61010-1		
	Class I		
	Pollution degree 2		
Insulation resistance	30 M Ω or more (500 V DC)		
Hipot	1390 VAC, 2 seconds [between the AC LINE and chassis]		
	1200 VAC, 1 second [UL-approved products only]		
Environment	Specification range : 5 °C to 35°C / 20 %rh to 80 %rh		
	Operable range : 0 °C to 40°C / 20 %rh to 80 %rh		
	Storage range : -20 °C to 70 °C / 80 %rh or less		
Dimensions (maximum)	430[16.9 inch] W×		
	177[6.97 inch] (195[7.68 inch]) H ×		
	370[14.6 inch] (450[17.7 inch]) D mm		
Weight			
for line voltage of 100 V	Approx. 21 kg(Approx.46.30 lbs)		
for line voltage of 100 V to 120 V	Approx. 23 kg(Approx.50.70 lbs)		
for line voltage of 220 V to 240 V	Approx. 24 kg(Approx.52.91 lbs)		
Accessories			
High-voltage test lead	TL01-TOS (max.allowablevoltage: 5 kV /1.5m) TL03-TOS (max.allowablevoltage: 10 kV /1.5m)		
Others	14-pin amphenol plug (assembled)		


*1: Continuous output time may be limited depending on current high limit reference value and ambient temperature.

*2: Only on models that have CE marking on the panel. Not applicable to custom order models.

*3: Not applicable to custom order models.

*4: This instrument is a Class I equipment. Be sure to ground the protective conductor terminal of the instrument. The safety of the instrument is not guaranteed unless the instrument is grounded properly.

_

Supports best-selling model's performance while featuring RS-232C as standard interface

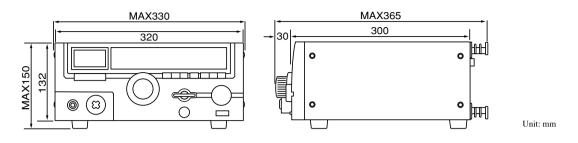
TOS5050A(ACW)

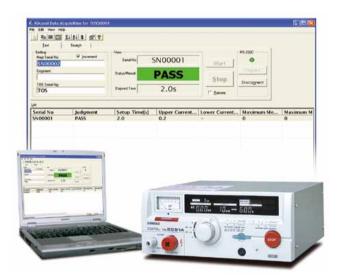
Capable of record and storage of the test data

The TOS5000A series offers testers specifically designed to conduct hipot testing on electronic devices and components in accordance with the relevant safety standards. Two models are available - TOS5050A with 5 kV AC output. While inheriting the basic performance of our best-selling TOS5000 series testers, TOS5000A has an additional feature - RS-232C interface - that comes standard with the tester. Because the tester can be connected directly to a PC and a serial printer, test data can be recorded and saved with ease, leading to further enhancement in quality control.

- Complies with various safety standards
- Large color display
- Digital voltmeter and ammeter
- Digital timer
- Window comparator type employed for PASS/FAIL judgement.
- Equipped with remote control function
- Various signal outputs
- Provided with zero turn-on switch
- Equipped with RS-232C as standard
- Data aquisition software (SD004-TOS5000A/Option)

TOS5050A Hipot Tester


Item		TOS5050A		
Output block				
Applied Voltage		0 to 2.5/0 to 5 kV AC		
AC		0.02.5/0.03.KVAC		
Output Rating (with nominal 1	ine voltage)	500VA / 5 kV, 100 mA		
Waveform		Commercial line waveform		
Voltage Regulation (with nominal	l line voltage)	Max. 15% (for max. rated load to no load)		
Switching	Thie voltage)	Use of a zero turn-on switch		
DC				
Maximum Output Rating (with nom	ingl ling welterer)			
	inai line vonage)			
Ripple				
Voltage Regulation (with nominal	line voltage)			
Output Voltmeters				
Analog	Scale	5 kV full scale (no mirrors), AC		
	Class	JIS Class 2.5		
	Accuracy	±5% of full scale		
	AC Indication	Mean value response / rms value scale		
Digital	Full Scale	2.5 kV/ 5kV full scale		
	Accuracy	±1.5% of full scale		
	AC Response	Mean value response / rms value display		
Ammeter				
Digital	Accuracy	$\pm(5\% + 20\mu A)$ of upper cutoff current		
	AC Response	Mean value response / rms value display		
Pass/fail Judgement Function				
Type of Judgement		Window comparator type		
21 . 6		• If the current detected is larger than the preset upper cutoff current, the tester gives a FAIL judgement.		
		• If the current detected is less than the preset lower cutoff current, the tester gives a FAIL judgement.		
		• As the tester gives a FAIL judgement, it cuts off the output and delivers a FAIL signal.		
		• If the test period elapses without any unacceptable conditions, the tester gives a PASS judgement		
Upper cutoff current setting ra	200	AC: 0.1 to 110 mA		
	-			
Lower cutoff current setting ra	inge	AC: 0.1 to 110 mA		
Judgement Accuracy		$\pm (5\% \text{ of upper cutoff current} + 20\mu\text{A})$		
Current Detection		The absolute value of current is integrated and compared with the preset cutoff current value.		
Calibration		Calibrated for rms value of sine wave, with pure-resistive load		
No-load output voltage require	ed	Approx. 460 V when set to 100 mA AC		
for detection				
Test Time Setting Range		0.5 to 999 sec (±10 ms) (timer-off function provided)		
Accuracy		±20 ms		
Line Voltage		100V±10%, 50/60 Hz (Nominal voltages of 110V, 120V, 220V, 230V and 240V available as factory options.)		
RS-232C				
Connector		D-SUB 9-pin connector on the rear panel (conforms to EIA-232-D)Outputs test data and test results		
Protocol		9600 bps, 8 bits Data Length, None-Parity, Stop bit 1 bit		
Function		Query test result, status and measured value, and start and stop test (Incapable of setting test condition)		
Power Requirements				
for line voltage of 100 V		Max. 25 VA under no-load conditions/ Approx. 600 VA at rated load		
for line voltage of 100 V to 20	0 V	Max. 25 VA under no-load conditions/ Approx. 600 VA at rated load		
for line voltage of 220 V to 24		Max. 25 VA under no-load conditions/ Approx. 640 VA at rated load		
Electromagnetic compatibility		Conforms to the requirements of the following directive and standard EMC Directive 2004/108/EC, EN61326, EN61000-3-2, EN61000-3-3		
0 1 5		Under following conditions 1. Used HV test leadwires which is supplied.		
		2. No discharge in testing.		
		3. Used the shielded cable which length is less than three meters when the SIGNAL I/O is used.		
Safty *1,2		Low Voltage Directive 2006/95/EC, EN61010-1, Class I, Pollution degree 2		
Environment		Ambient temperature and humidity : 5 °C to 35°C / 20 %rh to 80 %rh		
		Operable temperature and humidity : 0 °C to 40°C / 20 %rh to 80 %rh		
		Storage temperature and humidity : -0 °C to 70 °C / 80 %rh or less		
Dimensions (maximum)		320[12.60 inch] (330[12.99 inch]) W × 132[5.20 inch] (150[5.91 inch]) H × 300[11.81 inch] (365[14.37 inch]) D mm		
Weight				
-		$\frac{15 \log(4 \operatorname{parage} 22.07 \operatorname{lbs})}{15 \log(4 \operatorname{parage} 22.07 \operatorname{lbs})}$		
for line voltage of 100 V	0 V	Approx. 15 kg(Approx.33.07 lbs)		
for line voltage of 100 V to 12		Approx. 17 kg(Approx.37.48 lbs)		
for line voltage of 220 V to 24	U V	Approx. 18 kg(Approx.39.68 lbs)		
Accessories				
High-voltage test lead Others		TL01-TOS (max.allowablevoltage: 5 kV /1.5m) 14-pin amphenol plug (assembled)		


*1: Only on models that have CE marking on the panel. Not applicable to custom order models.

*2: Not applicable to custom order models.

TOS5050A Hipot Tester

External dimensional diagrams⁻

SD004-TOS5000A

(Data Acquisition for TOS5050A)

Providing an easy way to collect, manage, and save test results

Highly reliable quality control can be achieved!

SD004-TOS5000A is a software that lets you collect and manage test results generated by our TOS5000A Series hipot

manage test results generated by our TOS5000A Series hipot testers. Also, SD004-TOS5000A allows you to save, search, and print data with ease. What's more, you can execute or stop the test through a simple operation using a PC.

Features

- Test mode:Execution/stop function and automatic serial number incrementing function
- Search mode:Data item rearrangement and ascending/descending order function, search function ("sounds-like" search supported), print function (layout change supported), and text and HTML file output function.

Operating Environment

Pentium III or later, Windows XP/Windows 2000/Windows Me,

CD-ROM drive, mouse, display supporting 800 x 600 resolution, 128 MB or more of memory (recommended), 50 MB or more of free space in hard disk drive (for installation) plus sufficient disk capacity to store necessary files, and RS-232C (data rate of 9600 bps; use an RS-232C cross cable for connection.)

Insulation Resistance Tester

Complied with the test voltage -25 V to -1000 Vdc of the JIS C 1302-2002

TOS7200(IR)

Testing voltage range -25V to -1,000V, Resistance measurement range 0.01M Ω to 5,000M Ω

The TOS7200 is an insulation resistance tester available for a wide range of various electric and electronic components, as well as electric and electronic equipment. The output voltage can be set at desired value in the range of - 25 V to -1,000 V with a resolution of 1 V. (conforms with the output characteristics of the JIS C 1302-2002) . As it is fitted with a window comparator and timer function, the tester is capable of efficiently conducting insulation resistance tests based on various safety standards. In addition, this product is equipped with panel memory as standard feature, which can be recalled by remote control, SIGNAL I/O connector, and the RS-232C interface for easy automatic testing system construction.

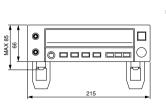
- Provided with the discharge function
- Equipped with the window comparator
- Hold function (which holds the measured resistance at the end of testing while PASS judgment is being output)
- Provided with the timer function
- Rear output terminals
- Measured-value monitoring terminals
- Equipped with the panel memory (enabling 10 different settings to be stored)
- Equipped with the SIGNAL I/O connector and remote control terminal
- Equipped with the RS-232C interface as standard

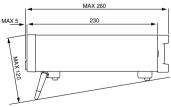
Insulation Resistance Tester

Output section								
Output voltage rang	ge	-25 V to -1000 V						
- 1 0 0	Resolution	1 V						
	Accuracy	±(1.5 % of setting	(7 + 2 V)					
Maximum rated loa		1 W (-1000 V DC						
Maximum rated cur								
Output terminals	Output type	Floating	loating					
r	Isolation voltage	±1000 VDC						
Ripple	1000 V / under no load	2 Vp-p or less						
	Maximum rated load	10 Vp-p or less						
Short-circuiting cur	rrent	12 mA or less						
Output rise time		50 ms or less (10	% to 90 %) [no load]					
Discharge function				arge resistance: $25 \text{ k} \Omega$)				
Voltmeter				,				
Measurement range	2	0 V to -1200 V						
Resolution		1 V						
Accuracy		±(1 % of reading	+1 V)					
Resistance meter			,					
Measurement range	2	0.01 M Ω to 5000	M Ω (In the range of α	over 100 nA to a maximum	n rated current of 1 m/	A)		
Display								
				$\Omega 100.0 M\Omega \le R < 1000$				1.4
		Δ.Δ Δ ΜΩ	Δ.Δ.ΜΩ	$\Box \Box \Box M\Omega$		$\kappa = measu$	ieu insu	lation resistand
Accuracy		100 - 1 - 2			1			
-		$100 \text{ nA} < i \le 20$			i -messured output	oltage value/measured	recistor	e value
		$\pm (10\% \text{ of rea})$	0, 1	0. 0.		5		
		-	6	%rh (no condensation), w		h as swinging of the t	est leady	vire]
Measurement range	e	The current meas	urement range is select	able between AUTO and I	FIX.			
	AUTO	Automatically ch	anges the current measu	rement range according t	to the measured current	t value.		
	FIX	Fixes the current	measurement range bas	ed on the output voltage	set value and LOWER	set value (in UPPER	OFF sta	tus).
Holding function		Holds the resistar	ce value obtained at the	e end of testing while a PA	ASS judgment is being	output.		
Judgment function								
Judgement method/	/action	Judgement	Judgement method			Display	Buzzer	SIGNAL I/O
		UPPER FAIL	If a resistance value equ	al or higher than the upper	resistance is detected,	FAIL LED lights.	ON	Outputs an
			the tester shuts off the	output and returns an UP	PER FAIL judgment.	UPPER LED lights.		U FAIL signa
		LOWER FAIL	If a resistance value ec	ual or less than the lower	resistance is detected,	FAIL LED	ON	Outputs a
			the tester shuts off the	output and returns a LOW	VER FAIL judgment.	lights.		L FAIL signa
			Note that no judgment	is made within the judgm	nent wait time	LOWER LED		
			(WAIT TIME) after the	e start of the test.		lights.		
		PASS	If no abnormality is fo	und when the set test time	e has elapsed,	PASS LED	ON	Outputs a
			the tester shuts off the	output and returns a PAS	S judgment.	lights.		PASS signal
			s output for approx. 200) ms. However, if the PAS	E HOLD function is a	et to "HOLD" the sig	nal is co	ontinuously
				· · · · · · · · · · · · · ·	55 HOLD function is s	erto mondo, une sig		
		-	OP signal is input.		SS HOLD function is s		,	
		output until a ST	e 1	nal is continuously output		_	,	
		output until a ST • An UPPER FAI	L or LOWER FAIL sig		until a STOP signal is	input.		common.
Setting range for the up	per resistance (UPPER)	output until a ST • An UPPER FAI • The FAIL and P	L or LOWER FAIL sign ASS buzzer volumes ar	nal is continuously output	t until a STOP signal is ey cannot be adjusted i	input.		common.
<u> </u>	per resistance (UPPER) wer resistance (LOWER)	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000	L or LOWER FAIL sign ASS buzzer volumes ar M Ω [In the range of t	nal is continuously output e adjustable. However, th	until a STOP signal is ey cannot be adjusted it or less]	input.		common.
Setting range for the low	wer resistance (LOWER)	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000	L or LOWER FAIL sign ASS buzzer volumes ar M Ω [In the range of t M Ω [In the range of t	nal is continuously output e adjustable. However, th he maximum rated currer he maximum rated currer	until a STOP signal is ey cannot be adjusted i it or less] it or less]	input. individually, as they a		common.
Setting range for the low Judgement accuracy	wer resistance (LOWER) y	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000 Judgement cur	L or LOWER FAIL sign ASS buzzer volumes ar $M \Omega$ [In the range of t $M \Omega$ [In the range of t rent	nal is continuously output e adjustable. However, th he maximum rated currer he maximum rated currer 100 nA < i ≤ 200 nA	t until a STOP signal is ey cannot be adjusted i at or less] 200nA < i ≤ 1 μA	input. individually, as they a 1 μA < i ≤ 1 mA		common.
Setting range for the low Judgement accuracy	wer resistance (LOWER) y	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000	L or LOWER FAIL sign ASS buzzer volumes ar $M \Omega$ [In the range of t $M \Omega$ [In the range of t rent	nal is continuously output e adjustable. However, th he maximum rated currer he maximum rated currer	t until a STOP signal is ey cannot be adjusted in at or less] at or less] 200nA < $i \le 1 \mu A$ —	input. individually, as they a		common.
Setting range for the low Judgement accuracy	wer resistance (LOWER) y	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000 Judgement cur	L or LOWER FAIL sign ASS buzzer volumes ar 0 M Ω [In the range of t 0 M Ω [In the range of t cent R 0.01 \leq R $<$ 10.0 M Ω 10.0 \leq R $<$ 50.0 M Ω 50.0 \leq R $<$ 100 M Ω	nal is continuously output e adjustable. However, th he maximum rated currer he maximum rated currer 100 nA < i ≤ 200 nA 	t until a STOP signal is ey cannot be adjusted in t or less] t or less] 200nA < i $\leq 1 \mu A$ = $\pm (5\% \text{ of setting + 5digit)}$ $\pm (5\% \text{ of setting + 5digit)}$	input. individually, as they a $\frac{1 \ \mu A < i \le 1 \ mA}{\pm (2 \ \% of setting + 3 digit)}$ $\pm (2 \ \% of setting + 3 digit)$ $\pm (2 \ \% of setting + 3 digit)$		common.
Setting range for the low Judgement accuracy	wer resistance (LOWER) y	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000 Judgement cur	L or LOWER FAIL sign ASS buzzer volumes ar M Ω [In the range of t M Ω [In the range of t M Ω [In the range of t R $0.01 \le R < 10.0 M\Omega$ $50.0 \le R < 100 M\Omega$ $100 M\Omega \le R < 200 M\Omega$	nal is continuously output e adjustable. However, th he maximum rated currer he maximum rated currer 100 nA < i \leq 200 nA — — — — 2 ± (10 % of setting + 5digit)	t until a STOP signal is ey cannot be adjusted in t or less] t or less] 200nA < i $\leq 1 \mu A$ = $\pm (5 \% of setting + 5digit)$ $\pm (5 \% of setting + 5digit)$ $\pm (5 \% of setting + 5digit)$	input. individually, as they a $\frac{1}{4} \mu A < i \le 1 mA$ $\pm (2 \% of setting + 3digit)$ $\pm (2 \% of setting + 3digit)$ $\pm (2 \% of setting + 3digit)$	re set in	
Setting range for the low Judgement accuracy	wer resistance (LOWER) y	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000 Judgement cur	L or LOWER FAIL sign ASS buzzer volumes ar M Ω [In the range of t M Ω [In the range of t M Ω [In the range of t 0 M Ω [In the range of t 0.01 \leq R < 10.0 M Ω 10.0 \leq R < 50.0 M Ω 50.0 \leq R < 100 M Ω 100 M $\Omega \leq$ R < 200 M Ω 200 M $\Omega \leq$ R < 500 M Ω	nal is continuously output e adjustable. However, th he maximum rated currer he maximum rated currer 100 nA < i \leq 200 nA — — 2 $\pm (10\% \text{ of setting + 5digit})$ 2 $\pm (10\% \text{ of setting + 5digit})$	t until a STOP signal is ey cannot be adjusted in t or less] 200nA < i $\leq 1 \mu A$ = $\pm (5\% \text{ of setting + 5digit)}$ $\pm (5\% \text{ of setting + 5digit)}$ $\pm (5\% \text{ of setting + 5digit)}$	input. individually, as they a $\frac{1}{2} (2\% \text{ of setting + 3digit})$ $\pm (2\% \text{ of setting + 3digit})$ $\pm (2\% \text{ of setting + 3digit})$ $\pm (2\% \text{ of setting + 3digit})$	re set in	ent current =
Setting range for the low Judgement accuracy	wer resistance (LOWER) y	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000 Judgement cur	L or LOWER FAIL sign ASS buzzer volumes ar M Ω [In the range of t M Ω [In the range of t M Ω [In the range of t R $0.01 \le R < 10.0 M\Omega$ $50.0 \le R < 100 M\Omega$ $100 M\Omega \le R < 200 M\Omega$	hal is continuously output e adjustable. However, th he maximum rated currer he maximum rated currer 100 nA < i \leq 200 nA 2 ± (10 % of setting + 5digit) 2 ± (10 % of setting + 5digit) 2 ± (10 % of setting + 5digit)	t until a STOP signal is ey cannot be adjusted in t or less] 200nA < i $\leq 1 \mu A$ = $\pm (5\% \text{ of setting + 5digit)}$ $\pm (5\% \text{ of setting + 5digit)}$ $\pm (5\% \text{ of setting + 5digit)}$	input. individually, as they a $\frac{1}{4} \mu A < i \le 1 mA$ $\pm (2 \% of setting + 3digit)$ $\pm (2 \% of setting + 3digit)$ $\pm (2 \% of setting + 3digit)$	re set in Judgeme test volt	ent current = age
Setting range for the low Judgement accuracy	wer resistance (LOWER) y	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000 Judgement cur	L or LOWER FAIL sign ASS buzzer volumes ar 0 M Ω [In the range of t 0 M Ω [In the range of t 0 M Ω [In the range of t rent $10.0 \le R < 10.0 M\Omega$ $50.0 \le R < 100 M\Omega$ $100 M\Omega \le R < 500 M\Omega$ $200 M\Omega \le R < 500 M$	hal is continuously output e adjustable. However, the he maximum rated currer he maximum rated currer 100 nA < i \leq 200 nA 	t until a STOP signal is ey cannot be adjusted in at or less] to ress] 200nA < i $\leq 1 \mu A$ = $\pm (5 \% \text{ of setting + 5digit)}$ $\pm (5 \% \text{ of setting + 5digit)}$	input. individually, as they a $\frac{1}{2} (2\% \text{ of setting + 3digit})$ $\pm (2\% \text{ of setting + 3digit})$ $\pm (2\% \text{ of setting + 3digit})$ $\pm (2\% \text{ of setting + 3digit})$	re set in Judgeme test volt	ent current =
Setting range for the low Judgement accuracy	wer resistance (LOWER) y	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000 Judgement cur UPPER, LOWE	L or LOWER FAIL sign ASS buzzer volumes ar 0 M Ω [In the range of t 0 M Ω [In the range of t 0 M Ω [In the range of t rent $10.0 \le R < 10.0 M\Omega$ $50.0 \le R < 100 M\Omega$ $100 M\Omega \le R < 200 M\Omega$ $500 M\Omega \le R < 500 M$ $1000 M\Omega \le R < 2000 M$ $1000 M\Omega \le R < 2000 M$	hal is continuously output e adjustable. However, th he maximum rated currer he maximum rated currer 100 nA < i \leq 200 nA - - $2 \pm (10 \% of setting + 5digit)$ $\Omega \pm (10 \% of setting + 5digit)$ $\Omega \pm (10 \% of setting + 5digit)$ $\Omega \pm (10 \% of setting + 100digit)$	t until a STOP signal is ey cannot be adjusted in at or less] 200nA < i $\leq 1 \mu A$ = $\pm (5 \% \text{ of setting + 5digit)}$ $\pm (5 \% \text{ of setting + 5digit)}$	input. individually, as they a $\frac{1 \ \mu A < i \le 1 \ mA}{\pm (2 \ \% \ of \ setting + 3 \ digit)} \pm (2 \ \% \ of \ setting + 3 \ digit)} \pm (2 \ \% \ of \ setting + 3 \ digit) \pm (2 \ \% \ of \ setting + 3 \ digit)} \pm (2 \ \% \ of \ setting + 3 \ digit)} \pm (2 \ \% \ of \ setting + 3 \ digit)} \pm (2 \ \% \ of \ setting + 3 \ digit)} \pm (2 \ \% \ of \ setting + 3 \ digit)} = -$	Judgem test volt /(UPPE)	ent current = age R.LOWER)
Setting range for the up Setting range for the low Judgement accuracy For both UPPER ar	wer resistance (LOWER) y	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000 Judgement cur UPPER, LOWE [The humidity mu	L or LOWER FAIL sign ASS buzzer volumes ar 0 M Ω [In the range of t 0 M Ω [In the range of t 0 M Ω [In the range of t rent R 0.01 \leq R < 10.0 M Ω 10.0 \leq R < 50.0 M Ω 50.0 \leq R < 100 M Ω 200 M $\Omega \leq$ R < 500 M 100 M $\Omega \leq$ R < 500 M 200 M $\Omega \leq$ R < 200 M 1000 M $\Omega \leq$ R < 200 M 1000 M $\Omega \leq$ R < 200 M 1000 M $\Omega \leq$ R < 200 M 2000 M $\Omega \leq$ R < 200 M 2000 M $\Omega \leq$ R < 200 M	hal is continuously output e adjustable. However, the he maximum rated currer he maximum rated currer 100 nA < i \leq 200 nA 	t until a STOP signal is ey cannot be adjusted in at or less] 200nA < i $\leq 1 \mu A$ = $\pm (5 \% \text{ of setting + 5digit)}$ $\pm (5 \% \text{ of setting + 5digit)}$	input. individually, as they a $\frac{1 \ \mu A < i \le 1 \ mA}{\pm (2 \ \% \ of \ setting + 3 \ digit)} \pm (2 \ \% \ of \ setting + 3 \ digit)} \pm (2 \ \% \ of \ setting + 3 \ digit) \pm (2 \ \% \ of \ setting + 3 \ digit)} \pm (2 \ \% \ of \ setting + 3 \ digit)} \pm (2 \ \% \ of \ setting + 3 \ digit)} \pm (2 \ \% \ of \ setting + 3 \ digit)} \pm (2 \ \% \ of \ setting + 3 \ digit)} = -$	Judgem test volt /(UPPE)	ent current = age R.LOWER)
Setting range for the low Judgement accuracy	wer resistance (LOWER) y	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000 Judgement cur UPPER, LOWE [The humidity musuch as swinging	L or LOWER FAIL sign ASS buzzer volumes ar 0 M Ω [In the range of t 0 M Ω [In the range of t 0 M Ω [In the range of t rent R 0.01 \leq R < 10.0 M Ω 100 \leq R < 50.0 M Ω 200 M $\Omega \leq$ R < 100 M Ω 200 M $\Omega \leq$ R < 200 M Ω 200 M $\Omega \leq$ R < 1000 M 1000 $\Omega \leq$ R < 1000 M 2000 M $\Omega \leq$ R < 2000 M	hal is continuously output e adjustable. However, the he maximum rated currer he maximum rated currer 100 nA < i ≤ 200 nA 	t until a STOP signal is ey cannot be adjusted in at or less] to ress] 200nA < i $\le 1 \mu A$ = $\pm (5\% \text{ of setting + 5digit)}$ $\pm (5\% \text{ of setting + 5digit)}$	input. individually, as they a $\frac{1 \ \mu A < i \le 1 \ mA}{\pm (2 \ \% \ of \ setting + 3digi)} \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) = (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) = (2 \ \% \ setting +$	Judgem test volt /(UPPE sturbanc	ent current = age R.LOWER) e
Setting range for the low Judgement accuracy	wer resistance (LOWER) y	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000 Judgement cur UPPER, LOWE [The humidity musuch as swinging [The lower judgm]	L or LOWER FAIL sign ASS buzzer volumes ar 0 M Ω [In the range of t 0 M Ω [In the range of t 0 M Ω [In the range of t rent $\Omega = 0.01 \le R < 10.0 M\Omega$ $10.0 \le R < 50.0 M\Omega$ $100 M\Omega \le R < 200 M\Omega$ $200 M\Omega \le R < 1000 M$ $1000 M\Omega \le R < 1000 M$	hal is continuously output e adjustable. However, the he maximum rated currer he maximum rated currer 100 nA < i ≤ 200 nA - 2 $\pm (10\% of setting + 5digit)$ $\Omega \pm (10\% of setting + 5digit)$ $\Omega \pm (10\% of setting + 5digit)$ $\Omega \pm (10\% of setting + 100digit)$ $\Omega \pm (10\% of setting + 100digit)$ $\Omega \pm (10\% of setting + 100digit)$ $\Omega \%$ rh to 70 %rh (no cond- tion of 0.5 s or more after	t until a STOP signal is ey cannot be adjusted in at or less] to ress] 200nA < i $\le 1 \mu A$ = $\pm (5\% \text{ of setting + 5digit)}$ $\pm (5\% \text{ of setting + 5digit)}$	input. individually, as they a $\frac{1 \ \mu A < i \le 1 \ mA}{\pm (2 \ \% \ of \ setting + 3digi)} \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) = (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) = (2 \ \% \ setting +$	Judgem test volt /(UPPE sturbanc	ent current = age R.LOWER) e
Setting range for the low Judgement accuracy For both UPPER an	wer resistance (LOWER) y	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000 Judgement cur UPPER, LOWE [The humidity musuch as swinging [The lower judgm]	L or LOWER FAIL sign ASS buzzer volumes ar 0 M Ω [In the range of t 0 M Ω [In the range of t 0 M Ω [In the range of t rent R 0.01 \leq R < 10.0 M Ω 100 \leq R < 50.0 M Ω 200 M $\Omega \leq$ R < 100 M Ω 200 M $\Omega \leq$ R < 200 M Ω 200 M $\Omega \leq$ R < 1000 M 1000 $\Omega \leq$ R < 1000 M 2000 M $\Omega \leq$ R < 2000 M	hal is continuously output e adjustable. However, the he maximum rated currer he maximum rated currer 100 nA < i ≤ 200 nA - 2 $\pm (10\% of setting + 5digit)$ $\Omega \pm (10\% of setting + 5digit)$ $\Omega \pm (10\% of setting + 5digit)$ $\Omega \pm (10\% of setting + 100digit)$ $\Omega \pm (10\% of setting + 100digit)$ $\Omega \pm (10\% of setting + 100digit)$ $\Omega \%$ rh to 70 %rh (no cond- tion of 0.5 s or more after	t until a STOP signal is ey cannot be adjusted in at or less] to ress] 200nA < i $\le 1 \mu A$ = $\pm (5\% \text{ of setting + 5digit)}$ $\pm (5\% \text{ of setting + 5digit)}$	input. individually, as they a $\frac{1 \ \mu A < i \le 1 \ mA}{\pm (2 \ \% \ of \ setting + 3digi)} \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) = (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) = (2 \ \% \ setting +$	Judgem test volt /(UPPE sturbanc	ent current = age R.LOWER) e
Setting range for the low Judgement accuracy For both UPPER an	wer resistance (LOWER) y nd LOWER	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000 Judgement cur UPPER, LOWE [The humidity musuch as swinging [The lower judgm of 1.0 s or more 1	L or LOWER FAIL sign ASS buzzer volumes ar 0 M Ω [In the range of t 0 M Ω [In the range of t 0 M Ω [In the range of t rent R 0.01 \leq R < 10.0 M Ω 10.0 \leq R < 50.0 M Ω 200 M $\Omega \leq$ R < 100 M Ω 200 M $\Omega \leq$ R < 200 M Ω 200 M $\Omega \leq$ R < 1000 M 1000 M $\Omega \leq$ R < 1000 M 2000 M $\Omega \leq$ R < 1000 M 1000 M $\Omega \leq$ R < 2000 M 2000 M $\Omega \leq$ R < 2000 M 2000 M $\Omega \leq$ R < 1000 M 1000 Here the the range of 20 c of the test leadwires.] nent requires a test dura for a lower judgment of	hal is continuously output e adjustable. However, the he maximum rated currer he maximum rated currer 100 nA < i ≤ 200 nA - - 2 ± (10 % of setting + 5digit) 2 ± (10 % of setting + 5digit) 2 ± (10 % of setting + 5digit) 2 ± (10 % of setting + 100digit) 2 % rh to 70 % rh (no conder tion of 0.5 s or more after 200 nA or less.]	t until a STOP signal is ey cannot be adjusted in at or less] to ress] 200nA < i $\le 1 \mu A$ = $\pm (5\% \text{ of setting + 5digit)}$ $\pm (5\% \text{ of setting + 5digit)}$	input. individually, as they a $\frac{1 \ \mu A < i \le 1 \ mA}{\pm (2 \ \% \ of \ setting + 3digi)} \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) = (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) = (2 \ \% \ setting +$	Judgem test volt /(UPPE sturbanc	ent current = age R.LOWER) e
Setting range for the low Judgement accuracy For both UPPER ar Time Setting range for the tes	wer resistance (LOWER) y nd LOWER st duration (TEST TIME)	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000 Judgement cur UPPER, LOWE [The humidity musuch as swinging [The lower judgm of 1.0 s or more 1 0.5 s to 999 s (TH	L or LOWER FAIL sign ASS buzzer volumes ar 0 M Ω [In the range of t 0 M Ω [In the range of t 0 M Ω [In the range of t 0 M Ω [In the range of t 10 M $\Omega \le R < 100 M\Omega$ 10 M $\Omega \le R < 100 M\Omega$ 10 M $\Omega \le R < 100 M\Omega$ 200 M $\Omega \le R < 100 M$ 100 M $\Omega \le R < 100 M$ 200 M $\Omega \le R < 100 M$ 100 M $\Omega \le 1$	hal is continuously output e adjustable. However, the he maximum rated currer he maximum rated currer 100 nA < i ≤ 200 nA - 2 ± (10 % of setting + 5digit) 2 ± (10 % of setting + 5digit) 10 ± (10 % of setting + 5digit) 10 ± (10 % of setting + 100digit) 10 ± (10 % of setting + 100digit) 10 Ω ± (10 % of setting + 100digit) 10 %rh to 70 %rh (no conduction of 0.5 s or more after 200 nA or less.]	t until a STOP signal is ey cannot be adjusted in at or less] to ress] 200nA < i $\le 1 \mu A$ = $\pm (5\% \text{ of setting + 5digit)}$ $\pm (5\% \text{ of setting + 5digit)}$	input. individually, as they a $\frac{1 \ \mu A < i \le 1 \ mA}{\pm (2 \ \% \ of \ setting + 3digi)} \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) = (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) = (2 \ \% \ setting +$	Judgem test volt /(UPPE sturbanc	ent current = age R.LOWER) e
Setting range for the low Judgement accuracy For both UPPER an Time	wer resistance (LOWER) y nd LOWER	output until a ST • An UPPER FAI • The FAIL and P 0.01 M Ω to 5000 0.01 M Ω to 5000 Judgement cur UPPER, LOWE [The humidity musuch as swinging [The lower judgm of 1.0 s or more 1 0.5 s to 999 s (TH	L or LOWER FAIL sign ASS buzzer volumes ar 0 M Ω [In the range of t 0 M Ω [In the range of t 0 M Ω [In the range of t 0 M Ω [In the range of t 10 M $\Omega \le R < 10.0 M\Omega$ 10 M $\Omega \le R < 100 M\Omega$ 200 M $\Omega \le R < 100 M\Omega$ 200 M $\Omega \le R < 100 M$ 200 M $\Omega \le 100 M$	hal is continuously output e adjustable. However, the he maximum rated currer he maximum rated currer 100 nA < i ≤ 200 nA - 2 ± (10 % of setting + 5digit) 2 ± (10 % of setting + 5digit) 10 ± (10 % of setting + 5digit) 10 ± (10 % of setting + 100digit) 10 ± (10 % of setting + 100digit) 10 Ω ± (10 % of setting + 100digit) 10 %rh to 70 %rh (no conduction of 0.5 s or more after 200 nA or less.]	t until a STOP signal is ey cannot be adjusted in at or less] to ress] 200nA < i $\le 1 \mu A$ = $\pm (5\% \text{ of setting + 5digit)}$ $\pm (5\% \text{ of setting + 5digit)}$	input. individually, as they a $\frac{1 \ \mu A < i \le 1 \ mA}{\pm (2 \ \% \ of \ setting + 3digi)} \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) = (2 \ \% \ of \ setting + 3digi) \pm (2 \ \% \ of \ setting + 3digi) = (2 \ \% \ setting +$	Judgem test volt /(UPPE sturbanc	ent current = age R.LOWER) e

Insulation Resistance Tester

Interface and Other Functions


	-	connector on the front panel note controller RC01-TOS or RC02-TOS is			
		notely control starting/stopping of a test			
	(note that a DIN-mini DIN adapter is required).				
SIGNAL I/O	-	D-SUB 25-pin connector on the rear panel For names and descriptions of connector signals.			
No.Signal name I/O D	Description of signal	escriptions of connector signals.			
1 PM0 I L	SB *1	[Pin Configuration for the			
2 PM1 I * 3 PM2 I *		SIGNAL I/O Connector]			
4 PM3 I N	ISB *1	13121110987654321			
5 N.C 6 N.C		25 24 23 22 21 20 19 18 17 16 15 14			
7 N.C 8 N.C					
9 STB I Ir	nput terminal for the	strobe signal of the panel memory			
10 N.C 11 N.C					
12 N.C 13 COM C	Circuit common (cha	ssis potential)			
14 HV ON O C	ON during a test or w	while a voltage remains between the output			
	erminals DN during a test				
		econds when PASS judgment is made, or le PASS HOLD is activated			
17 UFAIL O C	Continuously ON if a	n insulation resistance equal to or exceed-ing			
		is detected, resulting in FAIL judgment n insulation resistance equal to or falling			
b	elow the lower resis	tance is detected, resulting in FAIL judg-ment			
20 N.C	ON during standby				
	nput terminal for the nput terminal for the				
23 ENABLE I F		le signal input terminal			
24 N.C 25 COM C	Circuit common (cha	ssis potential)			
: 1-digit BCD active LC	W input				
Panel memory's select		minal ignal at the rise of the strobe signal			
Input specifications High-level input voltage	11 V to 15 V	All input signals are active Low controlle			
Low-level input voltage		The input terminal is pulled up to +12			
Low-level input current		using a resistor. Opening the input terminal is equivalent			
Input time width		inputting a high-level signal.			
	5 ms minimum	inputting a nigh-level signal.			
Output specifications					
Output specifications Output method	Open collector o	utput (4.5 V to 30 V DC)			
Output specifications Output method Output withstand voltage	Open collector o 30 V DC	utput (4.5 V to 30 V DC)			
Output specifications Output method	Open collector o 30 V DC Approx. 1.1 V (a	utput (4.5 V to 30 V DC) t 25°C)			
Output specifications Output method Output withstand voltage Output saturation voltage	Open collector o 30 V DC Approx. 1.1 V (<i>a</i> 400 mA (TOTAI Outputs a logarit	utput (4.5 V to 30 V DC) tt 25°C) .) hmically compressed voltage corresponding			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured	utput (4.5 V to 30 V DC) tt 25°C) .) hmically compressed voltage corresponding resistance value			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx	utput (4.5 V to 30 V DC) at 25°C) .) hmically compressed voltage corresponding resistance value ./ 1MΩ)			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea	utput (4.5 V to 30 V DC) at 25°C) bmically compressed voltage corresponding resistance value 1/ 1MΩ) sured resistance value (1 M Ω: 0.30 V;			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V;	utput (4.5 V to 30 V DC) at 25°C) .) hmically compressed voltage corresponding resistance value ./ 1MΩ)			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + COM	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or m Analog output-ci	utput (4.5 V to 30 V DC) at 25°C) .) hmically compressed voltage corresponding resistance value ./ 1MΩ) sured resistance value (1 M Ω: 0.30 V; 100 M Ω: 2.00 V; 1000 M Ω: 3.00 V; tore: 4.00 V). Output impedance: 1 k Ω ircuit common			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + COM Accuracy	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or m Analog output-c: ±(2 % of full sca	utput (4.5 V to 30 V DC) at 25°C) .) hmically compressed voltage corresponding resistance value (1 MΩ) sured resistance value (1 M Ω: 0.30 V; 100 M Ω: 2.00 V; 1000 M Ω: 3.00 V; tore: 4.00 V). Output impedance: 1 k Ω ircuit common le)			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + COM	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or m Analog output-ci ±(2 % of full sca D-SUB 9-pin context	utput (4.5 V to 30 V DC) at 25°C) .) hmically compressed voltage corresponding resistance value $(1 M \Omega)$ sured resistance value (1 M Ω: 0.30 V; 100 M Ω: 2.00 V; 1000 M Ω: 3.00 V; tore: 4.00 V). Output impedance: 1 k Ω ircuit common le) sector on the rear panel (compliant with EIA-232-D)			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + COM Accuracy	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or m Analog output-c: $\pm (2 \% \text{ of full sca}$ D-SUB 9-pin conne All functions oth	utput (4.5 V to 30 V DC) tt 25°C) _) hmically compressed voltage corresponding resistance value / 1M Ω) sured resistance value (1 M Ω : 0.30 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; tore: 4.00 V). Output impedance: 1 k Ω irreuit common le) tert or on the rear panel (compliant with EIA-232-D) ter than the POWER switch and KEY-LOCK			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + COM Accuracy	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or m Analog output-c: $\pm (2 \% \text{ of full sca}$ D-SUB 9-pin conne All functions oth	utput (4.5 V to 30 V DC) tt 25°C) hmically compressed voltage corresponding resistance value / 1MΩ) sured resistance value (1 M Ω: 0.30 V; 100 M Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 M Ω: 2.00 V; 1000 M Ω: 3.00 V; tore: 4.00 V). Output impedance: 1 k Ω ircuit common le) cetor on the rear panel (compliant with EIA-232-D) ther than the POWER switch and KEY-LOCK otely controllable.			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + COM Accuracy RS-232C	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or m Analog output-ci ±(2 % of full sea D-SUB 9-pin come All functions oth function are rem 9600 bps/19200	utput (4.5 V to 30 V DC) tt 25°C) hmically compressed voltage corresponding resistance value / 1MΩ) sured resistance value (1 M Ω: 0.30 V; 100 M Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 M Ω: 2.00 V; 1000 M Ω: 3.00 V; tore: 4.00 V). Output impedance: 1 k Ω ircuit common le) cetor on the rear panel (compliant with EIA-232-D) ther than the POWER switch and KEY-LOCK otely controllable.			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + COM Accuracy RS-232C	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or m Analog output-c: ±(2 % of full sca D-SUB 9-pin conne All functions oth function are rem 9600 bps/19200 (data: 8 bits; par 7-segment LED,	utput (4.5 V to 30 V DC) tt 25°C) hmically compressed voltage corresponding resistance value / 1MΩ) sured resistance value (1 M Ω : 0.30 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 3.00 V			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + COM Accuracy RS-232C Baud rate Display	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or m Analog output-c: ±(2 % of full sca D-SUB 9-pin conne All functions oth function are rem 9600 bps/19200 (data: 8 bits; par 7-segment LED, resistance displa	utput (4.5 V to 30 V DC) tt 25°C) .) hmically compressed voltage corresponding resistance value / 1MΩ) sured resistance value (1 M Ω : 0.30 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 3.			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + COM Accuracy RS-232C Baud rate	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or m Analog output-c: ±(2 % of full sca D-SUB 9-pin conne All functions off function are rem 9600 bps/19200 (data: 8 bits; par 7-segment LED, resistance displa	utput (4.5 V to 30 V DC) tt 25°C) hmically compressed voltage corresponding resistance value / 1MΩ) sured resistance value (1 M Ω : 0.30 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 m Ω : 3.00 V			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + COM Accuracy RS-232C Baud rate Display	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or m Analog output-c: ±(2 % of full sca D-SUB 9-pin conne All functions oth function are rem 9600 bps/19200 (data: 8 bits; par 7-segment LED, resistance displa	utput (4.5 V to 30 V DC) tt 25°C) .) hmically compressed voltage corresponding resistance value / 1MΩ) sured resistance value (1 M Ω : 0.30 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; iore: 4.00 V). Output impedance: 1 k Ω ircuit common le) sctor on the rear panel (compliant with EIA-232-D) ter than the POWER switch and KEY-LOCK otely controllable. bps/38400 bps ity: none; stop bit: 2 bits fixed) 4-digit voltage display, 4-digit insulation y, and 3-digit time display 0 types of test conditions can be stored			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + COM Accuracy RS-232C Baud rate Display Memory function	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or m Analog output-ci ±(2 % of full sca D-SUB 9-pin come All functions oth function are rem 9600 bps/19200 (data: 8 bits; par 7-segment LED, resistance displa	utput (4.5 V to 30 V DC) tt 25°C) .) hmically compressed voltage corresponding resistance value / 1MΩ) sured resistance value (1 M Ω : 0.30 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; iore: 4.00 V). Output impedance: 1 k Ω ircuit common le) sctor on the rear panel (compliant with EIA-232-D) ter than the POWER switch and KEY-LOCK otely controllable. bps/38400 bps ity: none; stop bit: 2 bits fixed) 4-digit voltage display, 4-digit insulation y, and 3-digit time display 0 types of test conditions can be stored			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + COM Accuracy RS-232C Baud rate Display Memory function Backup battery life TEST MODE MOMENTARY	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or m Analog output-ci ±(2 % of full sca D-SUB 9-pin come All functions oth function are rem 9600 bps/19200 (data: 8 bits; par 7-segment LED, resistance displa A maximum of 1 in memory. 3 years or more of A test is conduct	utput (4.5 V to 30 V DC) at 25°C) .) hmically compressed voltage corresponding resistance value ./ 1MΩ) sured resistance value (1 M Ω: 0.30 V; 100 M Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 M Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 M Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 m Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 m Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 m Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 m Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 m Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 m Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 m Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 m Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 m Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 m Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 m Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 m Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 m Ω: 3.00 V; 100 m Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 m Ω: 3.00 V; 100 m Ω: 2.00 V; 1000 M Ω: 3.00 V; 100 m			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + COM Accuracy RS-232C Baud rate Display Memory function Backup battery life TEST MODE	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or m Analog output-ci ±(2 % of full sca D-SUB 9-pin come All functions oth function are rem 9600 bps/19200 (data: 8 bits; par 7-segment LED, resistance displa A maximum of 1 in memory. 3 years or more A test is conduct Disables cancella	utput (4.5 V to 30 V DC) tt 25°C) _) hmically compressed voltage corresponding resistance value / 1MΩ) sured resistance value (1 M Ω : 0.30 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; tore: 4.00 V). Output impedance: 1 k Ω ircuit common le) ter or the rear panel (compliant with EIA-232-D) ter than the POWER switch and KEY-LOCK otely controllable. bps/38400 bps ity: none; stop bit: 2 bits fixed) 4-digit voltage display, 4-digit insulation y, and 3-digit time display 0 types of test conditions can be stored (at 25 °C) ed only when the START switch is pressed. ation of FAIL judgment using a stop signal			
Output specifications Output method Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + - COM Accuracy RS-232C Baud rate Display Memory function Backup battery life TEST MODE MOMENTARY FAIL MODE	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + RX where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or m Analog output-c: $\pm (2 \% \text{ of full sca}$ D-SUB 9-pin come All functions oth function are rem 9600 bps/19200 (data: 8 bits; pai 7-segment LED, resistance displa A maximum of 1 in memory. 3 years or more to A test is conduct Disables cancell- via remote contr	utput (4.5 V to 30 V DC) tt 25°C) hmically compressed voltage corresponding resistance value / 1MΩ) sured resistance value (1 M Ω : 0.30 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; tore: 4.00 V). Output impedance: 1 k Ω ircuit common le) ector on the rear panel (compliant with EIA-232-D) ter than the POWER switch and KEY-LOCK otely controllable. bps/38400 bps ity: none; stop bit: 2 bits fixed) 4-digit voltage display, 4-digit insulation y, and 3-digit time display 0 types of test conditions can be stored (at 25 °C) ed only when the START switch is pressed. ation of FAIL judgment using a stop signal ol.			
Output specifications Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + COM Accuracy RS-232C Baud rate Display Memory function Backup battery life TEST MODE MOMENTARY	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 1000 M Ω or m Analog output-c: \pm (2 % of full sca D-SUB 9-pin come All functions oth function are rem 9600 bps/19200 (data: 8 bits; pai 7-segment LED, resistance displa A maximum of 1 in memory. 3 years or more to A test is conduct Disables cancell: via remote contrr Starts a test only	utput (4.5 V to 30 V DC) tt 25°C) hmically compressed voltage corresponding resistance value / 1MΩ) sured resistance value (1 M Ω : 0.30 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; tore: 4.00 V). Output impedance: 1 k Ω ircuit common le) ctor on the rear panel (compliant with EIA-232-D) ter than the POWER switch and KEY-LOCK otely controllable. bps/38400 bps ity: none; stop bit: 2 bits fixed) 4-digit voltage display, 4-digit insulation y, and 3-digit time display 0 types of test conditions can be stored (at 25 °C) ed only when the START switch is pressed. ation of FAIL judgment using a stop signal ol. when the STOP switch is pressed and the			
Output specifications Output method Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + - COM Accuracy RS-232C Baud rate Display Memory function Backup battery life TEST MODE MOMENTARY FAIL MODE	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or m Analog output-ci ±(2 % of full sca D-SUB 9-pin come All functions oth function are rem 9600 bps/19200 (data: 8 bits; par 7-segment LED, resistance displa A maximum of 1 in memory. 3 years or more for A test is conduct Disables cancell: via remote contr Starts a test only START switch is	utput (4.5 V to 30 V DC) tt 25°C) hmically compressed voltage corresponding resistance value / 1MΩ) sured resistance value (1 M Ω : 0.30 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; tore: 4.00 V). Output impedance: 1 k Ω ircuit common le) ctor on the rear panel (compliant with EIA-232-D) ter than the POWER switch and KEY-LOCK otely controllable. bps/38400 bps ity: none; stop bit: 2 bits fixed) 4-digit voltage display, 4-digit insulation y, and 3-digit time display 0 types of test conditions can be stored (at 25 °C) ed only when the START switch is pressed. ation of FAIL judgment using a stop signal ol. when the STOP switch is pressed and the			
Output specifications Output method Output method Output withstand voltage Output saturation voltage Maximum output current ANALOG OUT + COM Accuracy RS-232C Baud rate Display Memory function Backup battery life TEST MODE MOMENTARY FAIL MODE DOUBLE ACTION	Open collector o 30 V DC Approx. 1.1 V (a 400 mA (TOTAI Outputs a logarit to the measured Vo = log (1 + Rx where Rx = mea 10 M Ω : 1.04 V; 10000 M Ω or Analog output-ci $\pm (2 \% \text{ of full sca}) D-SUB 9-pin come All functions oth function are rem 9600 bps/19200 (data: 8 bits; par 7-segment LED, resistance displa A maximum of 1 in memory. 3 years or more for A test is conduct Disables cancell: via remote contr Starts a test only START switch is Allows the time 0.2 s or HOLD. $	utput (4.5 V to 30 V DC) tt 25°C) hmically compressed voltage corresponding resistance value / 1MΩ) sured resistance value (1 M Ω : 0.30 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; 100 M Ω : 2.00 V; 1000 M Ω : 3.00 V; iore: 4.00 V). Output impedance: 1 k Ω ircuit common le) ector on the rear panel (compliant with EIA-232-D) ter than the POWER switch and KEY-LOCK totely controllable. bps/38400 bps ity: none; stop bit: 2 bits fixed) 4-digit voltage display, 4-digit insulation y, and 3-digit time display 0 types of test conditions can be stored (at 25 °C) ed only when the START switch is pressed. ation of FAIL judgment using a stop signal ol. when the STOP switch is pressed and the a pressed within approximately a half-second			


General Specifications

	Indoors and at altitudes up to 2000 m		
Warranty range	Temperature 5 °C to 35 °C		
	Humidity 20 %rh to 80 %rh (no condensation)		
Operating range	Temperature 0 °C to 40 °C		
	Humidity 20 %rh to 80 %rh (no condensation)		
Storage range	Temperature -20 °C to 70 °C		
	Humidity 90 %rh or less (no condensation)		
Power requirements			
Nominal voltage range	100 V to 240 V AC		
(allowable voltage range)	(85 V to 250 V AC)		
Power consumption	30 VA maximum		
At rated load			
Allowable frequency range	47 Hz to 63 Hz		
Insulation resistance	30 M Ω or more (500 V DC) [AC LINE to chassis]		
Hipot	1390 V AC for 2 seconds, 10 mA or less [AC LINE to chassi		
Ground bond	25 A AC/0.1 Ω or less		
Electromagnetic compa	atibility (EMC)*1		
 No discharge occurs Used the shielded ca SIGNAL I/O is used 	ires TL08-TOS which is supplied. s at outside of the tester. able which length is less than three meters when the		
Safety*1,2			
Low Voltage Directive EN61010-1 Class I Pollution degree 2	nents of the following directive and standard. 2006/95/EC		
Dimensions	215[8.46 inch] W ×		
(maximum)	66[2.60 inch] (85[3.35 inch]) H × 230[9.06 inch] (260[10.24 inch]) D mm		
(Approx. 2 kg(Approx.4.41 lbs)		
Weight	ippion = ig(ippion i io)		

*2: This instrument is a Class I equipment. Be sure to ground the protective conductor terminal of the instrument. The safety of the instrument is not guaranteed unless the instrument is grounded properly.

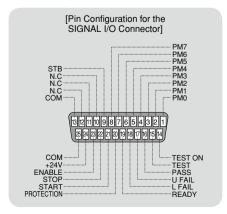
External dimensional diagrams

Unit: mm

Ground Bond Tester

Ground Bond tester supporting standard compliance tests up to 60A

TOS6210


GPIB RS-232C DRIVERS

Test up to 60A is possible!

While inheriting the basic performance and functions of its predecessor (TOS6200), such as a constant current driving system that provides current waveforms with little skew and high measurement accuracy, the TOS6210 tester extends the maximum test current from 30 A to 60 A, which is demanded by the new standard. In addition, the tester also lets you judge the acceptability of the device under test based on the drop in voltage, as required in the standard. What's more, you can preset test conditions of up to 20 different types of safety standards, such as those for information technology equipment, home appliances, medical devices, and measuring instruments, in the memory on the main unit's panel.

A simple memory call operation allows you to set up a protective earth or protective bonding continuity test as stipulated in UL60950-1 and other relevant specifications including IEC and JIS standards. The tester also features a set of functions that meet the specific needs of testing personnel, such as an offset cancellation function and a memo function that allows you to input calibration dates, production numbers, and other test-related information and read the input information later via the GPIB or RS-232C interface.

- Test current value: 6 to 60 A AC / Resistance value: 0.001 to 0.600Ω
- Voltage drop-based judgment function
- Offset cancelling function
- Stores 100 test conditions in memory
- Incorporates test conditions into program
- Contact check function
- Equipped with standard GPIB and RS-232C interfaces
- Equipped with standard test lead (TL12-TOS)

Ground Bond Tester

0					
Output block)ngo (*1)				
Current setting range (*1)		6.0 to 62.0 A AC (With respect to resistance resulting in output power of the maximum rated Output or less and an output terminal voltage of 5.4 V or less)			
Resolution		(with respect to resistance resulting in output power of the maximum rated Output of ress and an output terminal voltage of 3.4 v of ress) 0.1A			
Accuracy		$\pm (1\% \text{ of setting} + 0.4\text{A})$			
Maximum rated output		220 VA (at he output terminals)			
Distortion factor		2% or less (with respect to 0.1 Ω pure resistance load of 20 A or greater)			
Frequency		50/60 Hz, sine wave (selectable)			
Accuracy ±200ppm					
Open terminal vo	ltage	6 Vrms or less			
Dutput method	Juge	PWM switching method			
Dutput ammeter					
Measurement ran	Ige	0.0 to 66.0 A AC			
Resolution	-8-	0.1A			
Accuracy		$\pm (1\% \text{ of reading} + 0.4\text{A})$			
Response		Mean value response/rms value display (response time: 200 ms)			
Iolding function	l	The current measured at the end of test is held during the PASS or FAIL inteval			
Output voltmeter					
Aeasurement ran	ige	0.00 to 6.00 V AC			
Resolution	0	0.01V			
Offset cancel fun	ction	0.00 to 5.40 V (Offset ON/OFF function provided)			
Accuracy		$\pm (1\% \text{ of reading} + 0.02\text{V})$			
lesponse		Mean value response/rms value display (response time: 200 ms)			
Iolding function		The voltage measured at the end of test is held during the PASS or FAIL inteval			
Ohmmeter (*2)					
Aeasurement ran	ige	0.001 to 0.600 Ω			
Resolution		0.001 Ω			
Offset cancel fun	ction	0.000 to 0.600Ω (Offset ON/OFF function provided)			
Accuracy		$\pm (2\% \text{ of reading} + 0.003 \Omega)$			
Holding function		The resistance measured at the end of test is held during the PASS or FAIL interval			
ass/fail judgeme	ent function (*3)				
Resistance value-	-based judgement	Window comparator system			
		•If a resistance value equal to or greater than the upper reference value is detected, a FAIL determination is returned.			
		•If a resistance value equal to or less than the lower reference value is detected, a FAIL determination is returned.			
		•If a resistance value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal.			
		•If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal.			
	for the upper reference	0.001 to 0.600 Ω			
value (UPPEF					
	for the lower reference	0.001 to 0.600 Ω			
value (LOWF	ER)				
Resolution		0.001 Ω			
Judgement ac		± (2% of UPPER + 0.003 Ω)			
Sampled voltage	value-based judgement	Window comparator system			
		•If a voltage value equal to or greater than the upper reference value is detected, a FAIL determination is returned.			
		•If a voltage value equal to or less than the lower reference value is detected, a FAIL determination is returned.			
		•If a voltage value has been judged as FAIL, the tester shuts off the output and generates a FAIL signal.			
		•If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal.			
	for the upper reference	0.01 to 5.40 V			
value (UPPEI					
	for the lower reference	0.01 to 5.40 V			
value (LOWF	ER)				
Resolution		0.01 V			
Judgement ac	curacy	$\pm (2\% \text{ of UPPER} + 0.05 \text{ V})$			
Calibration		Calibration is performed with the rms value of the sine wave, using a pure resistance load.			
.ED	PASS	Lights for approximately 0.2 sec when the measured value has been judged as PASS.			
		It is lit continuously when the PASS holding time is set to HOLD.			
	UPPER FAIL	Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL.			
	LOWER FAIL	Lights if a resistance or voltage value equal to or greater than the upper reference value is detected and judged FAIL.			
Buzzer		•The buzzer sounds for the pass holding time has been set if the measured value has been judged as PASS.			
		•The buzzer sounds continuously under the following condition:			
		The measured value has been judged as PASS when the PASS holding time is set to HOLD.			
		The measured value has been judged as UPPER FAIL.			
		The measured value has been judged as LOWER FAIL.			
		•The buzzer volume for FAIL or PASS judgment are adjustable.			
		Note that it cannot be adjusted individually since setting is shared with the setting for PASS.			
: Time limitation	n with respect to output	*3: Resistance value-based and sampled voltage value-based judgments cannot be			
The heat radiat	tion capacity at the outpu	It block of the tester is designed to be one-			
		r size, weight, cost, and other factors. *4: Limited by the maximum rated output and the output terminal voltage.			
		ion values given below. Use of the tester The tester can be used within the range shown below.			
		Allowable range in which to determine the test current value and upper reference value			
excess	sively, potentially trippin	g the internal protection circuit. In this case, 0.8 +			
		induces, then press the STOP switch. When C			
temperatures fa	all to normal levels, the t	ester will revert to ready status.			
		me limitation ⁶ 4			

Upper reference v 0.4

0.2

0

5.4V

Test current A

20

(40.7A, 0.132Ω)

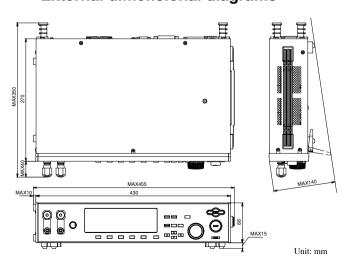
40

220VA

60

Output time limitation					
Ambient temperature t (°C)	Test current I (A)	Pause time	Maximum allowable continuous test time		
	$40 < I \le 60$	Equal to or greater than the test time	≤ 10 minutes		
t ≤ 40°	$20 < I \le 40$	Equal to or greater than the test time	≤ 30 minutes		
	I ≤ 20	Not required	Continuous output possible		

*2: About ohmmeter's response time


A resistance value is instantaneously obtained, calculated using the measured voltage and current values. The response time of the ohmmeter complies with the response times of the voltmeter and ammeter.

(60A, 0.061Ω)

Ground Bond Tester

Time		
Test time Setting range		0.3 to 999 s Timer ON/OFF function is available.
	Accuracy	+ (100ppm of setting + 20ms)
Environment	Theatable	
Operating environm	ent	Indoor use, Overvoltage Category II
Warranty range	Temperature	So to 35°C
	Humidity	20 %rh to 80 %rh (non condensing)
Operating range	Temperature	0° to 40°C
operating range	Humidity	20 %th to 80 %th (non condensing)
Storage range	Temperature	-20° to 70°C
Storage range	Humidity	90 % th or less (non condensing)
Altitude	Trainfaity	Up to 200m
Power requirement		
Allowable voltage ra	ange	85 to 250 V AC
	At no load (READY)	60 VA or less
	At rated load	420 VA max.
Allowable frequency		47 Hz to 63 Hz
Insulation resistance		$30M\Omega$ min. (500 V DC), between AC line and chassis
Hipot		1390 VAC (2 seconds), between AC line and chassis
Ground bond		25 A AC/0.1 Ω max.
Electromagnetic con	npatibility (EMC) (*5.	6
· · · · ·		ving directive and standard.
EMC Directive 2004		0
EN61326		
EN61000-3-2		
EN61000-3-3		
Under following cor	ditions	
0	wire (TL12-TOS) whi	ak is symplical
	· · · ·	n is supplied.
	ded cable which lengu	is less than three meters when the SIGNAL I/O is used.
Safety (*5)	· · · · · · · · · · · · · · · · · · ·	
•		ving directive and standard.
0	ective 2006/95/EC	
EN61010-1		
Class I		
Pollution degree		
1	sical dimensions(maximum) 430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (350[13.78 inch]) D mm	
Weight		Approx. 11kg(Approx.24.25 lbs)
Accessories		
AC power cord		1 piece
Test leadwire TL12-	TOS	1 set
Short bar		2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.)
AC power fuse		2 pieces (2, including one spare in the fuse holder)
Operation manual		1 сору
5: Not applicable to	custom order models.	

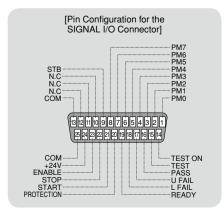
*6: Only on models that have CE marking on the panel.

-External dimensional diagrams----

Pursuing to maximize an easy operation, stylish design of Ground Bond Tester

TOS6200

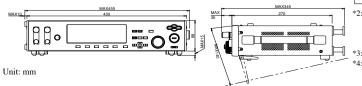
GPIB RS-232C DRIVERS


Adopting the constant current method to apply automated testing system

Perfect feature for the Production line which requires reduced tact time

The TOS6200 tester is designed to perform the ground bond tests required for class-I devices by safety standards such as IEC, EN, VDE, BS, UL, JIS, and the Electrical Appliance and Material Safety Low (Japan). Equipped with a new high-efficiency power supply, it is compact and lightweight, about half the size and weight of our conventional products, while achieving a large output of 150 VA. Use of the constant current method eliminates the need to reset test currents even in the face of fluctuating resistance values for the device being tested. The test duration can also be set from 0.3 s, making the tester suitable for production line testing, which requires reduced cycle time. This tester is also designed for ease of use, featuring a large, easy-to-read display, memory capacity for storage of 100 types of test conditions, and incorporation of test conditions into programs to enable automatic testing. Standard GPIB and RS-232C interfaces allow the user to use PCs or other devices to control test conditions such as test current, resistance value for judgement, and test duration, and enables read-back of measured values and test results. The tester is also provided with test leads as standard and provides high cost effectiveness.

 Test current value: 3 to 30 A AC / Resistance value: 0.001 to 1.200Ω


- Offset cancelling function
- Stores 100 test conditions in memory
- Incorporates test conditions into program
- Contact check function
- Equipped with standard GPIB and RS-232C interfaces
- Equipped with standard test lead (TL11-TOS)

Ground Bond Tester

Output			
		3.0 to 30.0 A AC (With respect to resistance resulting in output power of the maximum rated Output or less and an output terminal youtpace of 5.4 V or less)	
		terminal voltage of 5.4 V or less)	
	Resolution	0.1A	
	Accuracy	\pm (1% of setting + 0.2A)	
	um rated output	150 VA (at the output terminals)	
Distortion factor		2% or less (with respect to 0.1 Ω pure resistance load of 10 A or greater)	
Freque	ncy	50/60 Hz, sine wave (selectable)	
	Accuracy	±200ppm	
Open te	erminal voltage	6 Vrms or less	
Output	method	PWM switching method	
Output	ammeter		
Measur	ement range	0.0 to 33.0 A AC	
Resolut	tion	0.1A	
Accura	cy	± (1% of reading + 0.2A)	
Respon	se	Mean value response/rms value display (response time: 200 ms	
Holding	g function	The current measured at the end of test is held during the PASS or FAIL inteval	
Output	voltmeter		
	ement range	0.00 to 6.00 V AC	
Resolut	-	0.01V	
Accura	cy	$\pm (1\% \text{ of reading} + 0.02\text{V})$	
Respon	se	Mean value response/rms value display (response time: 200 ms	
Holding function		The voltage measured at the end of test is held during the PASS or FAIL inteval	
Ohmme	eter (*2)	1	
Measurement range		0.001 to 1.200 Ω	
Resolution		0.001 Ω	
Offset o	cancel function	0.000 to 1.200 Ω (Offset ON/OFF function provided	
Accura		$\pm (2\% \text{ of reading} + 0.003 \Omega)$	
	g function	The resistance measured at the end of test is held	
-	-	during the PASS interval	
Pass/fa	il judgement function		
Resistance value-based judgement		 If a resistance value equal to or greater than the upper reference value is detected, a FAILdetermination is returned. If a resistance value equal to or less than the lower reference value is detected, a FAIL determination is returned. If a resistance value has been judged as FAIL, the teste shuts off the output and generates a FAIL signal. If the set time elapses without abnormalities, the tester shuts off the output and generates a PASS signal. 	
	range for the upper rerence JPPER)	0.001 to 1.200 Ω	
Setting range for the upper rerence value (LOWER)		0.001 to 1.200 Ω	
Resolut	ion	0.001 Ω	
Judgem	ent accuracy	± (2% of UPPER + 0.003 Ω)	
Calibra	tion	Calibration is performed with the rms value of the sine wave, using a pure resistance load.	
	PASS	Lights for approximately 0.2 sec when the measured value has been judged as PASS.It is lit continuously when the PASS holding time is set to HOLD.	
LED	UPPER FAIL	Lights if a resistance value equal to or greater than the upper reference value is detected and judged FAIL.	
	LOWER FAIL	Lights if a resistance value equal to or greater than the	

—External dimensional diagrams —

-				
Buzzer		•The buzzer sounds for the pass holding time has been		
		set if the measured value has been judged as PASS.		
		•The buzzer sounds continuously under the following condition:		
		The measured value has been judged as PASS when the		
		PASS holding time is set to HOLD.		
		The measured value has been judged as UPPER FAIL.		
		The measured value has been judged as LOWER FAIL.		
		•The buzzer volume for FAIL or PASS judgment are		
		adjustable.		
		Note that it cannot be adjusted individually since setting		
		is shared with the setting for PASS.		
Time				
Test	Setting range	0.3 to 999 s Timer ON/OFF function is available.		
Time	Accuracy	\pm (100ppm of setting + 20ms)		
Environ	ment	1		
Operatin	ng environment	Indoor use, Overvoltage Category II		
Warrant	y range	Temperature : 5° to 35°C		
		Humidity : 20 %rh to 80 %rh (non condensing)		
Operatin	g range	Temperature : 0° to 40°C		
		Humidity : 20 %rh to 80 %rh (non condensing)		
Storage	range	Temperature : -20° to 70°C		
		Humidity: 90 %rh or less (non condensing)		
Altitude		Up to 2000m		
Power re	equirement			
Allowat	ole voltage range	100 V model : 85 to 132 V AC		
		100 V/200 V model : 85 to 132 V AC/170 to 250 V AC		
Power	At no load (READY)	100 V model : 70 VA or less		
consum-		100 V/200 V model : 60 VA or less		
ption	At rated load	100 V model : 450 VA max.		
		100 V/200 V model : 330 VA max.		
Allowat	ble frequency range	47 Hz to 63 Hz		
Insulatio	on resistance	30MΩ min. (500 V DC), between AC line and chassis		
Hipot		1390 V AC (2 seconds), between AC line and chassis		
Ground	bond	25 A AC/0.1 Ω max.		
Safety (*3) Conforms to the requi	rements of the following directive and standard.		
Low Vo	ltage Directive 2006/95/E0	C, EN61010-1, Class I, Pollution degree 2		
Electron	nagnetic compatibility (EM	AC) (*3,4)		
Conform	ns to the requirements of the	he following directive and standard.		
EMC D	irective 2004/108/EC, EN	51326, EN61000-3-2, EN61000-3-3		
Under fo	ollowing conditions 1. U	sed test leadwire (TL11-TOS) which is supplied.		
	-	ength is less than three meters when the SIGNAL I/O is used		
Physical	l dimensions (maximum)	430[16.93 inch] (455[17.91 inch]) W ×		
-	. ,	$[450[10.95 \text{ men}] (455[17.91 \text{ men}]) \text{ W } \times$		

Physical dimensions (maximum)	430[16.93 inch] (455[17.91 inch]) W × 88[3.46 inch] (140[5.51 inch]) H × 270[10.63 inch] (345[13.58 inch]) D mm
Weight	Approx. 9kg(Approx.19.84 lbs)
Accessories	
AC power cord	1 piece
Test leadwire TL11-TOS	1 set
Short bar	2 pieces (These are inserted between the OUTPUT and SAMPLING terminals.)
AC power fuse	2 pieces (2, including one spare in the fuse holder)
Operation manual	1 сору

*1: Time limitation with respect to output

The heat radiation capacity at the output block of the tester is designed to be one-third of the rated output, accounting for size, weight, cost, and other factors. Always use the tester within the limitation values given below. Use of the tester beyond these limits will cause the temperature of the output block to rise excessively, potentially tripping the internal protection circuit. In this case, suspend testing for approximately 30 minutes, then press the STOP switch. When temperatures fall to normal levels, the tester will revert to ready status.

Output time limitation				
Ambient temperature t (°C)	Test current I (A)	Pause time	Maximum allowable continuous test time	
t ≤ 40°	$15 < I \le 30$	Equal to or greater than the test time	≤ 30 minutes	
1≤40	I ≤ 15	Not required	Continuous output possible	

*2: About ohmmeter's response time

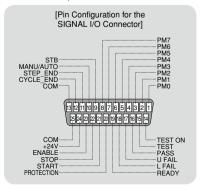
A resistance value is instantaneously obtained, calculated using the measured voltage and current values. The response time of the ohmmeter complies with the response times of the voltmeter and ammeter.

*3: Not applicable to custom order models.

*4: Only on models that have CE marking on the panel.

Leakage Current Tester

Supports touch current and protective conductor current (earth leakage current) tests

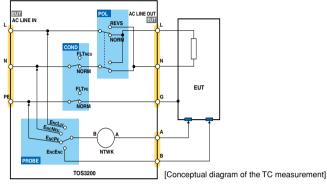

TOS3200

GPIB RS-232C USB

A leakage current tester has now been added to the TOS Series... Conforms to international standard IEC 60990 ("Methods of measurement of touch current and protective conductor current").

The Leakage Current Tester TOS3200 is designed to test for leakage current (Touch Current and Protective Conductor Current) of general electrical apparatuses, excluding those used for medical purposes. With this tester, you can conduct tests conforming to various standards including IEC, UL, JIS and Electrical Appliance and Material Safety Law (Japan). You can set test conditions through simple operations on the panel because this tester holds in its memory the 51 types of test conditions for IT-related electrical equipment, electrical appliances, audio & visual equipment, lighting fixtures, power tools, and measuring and control instruments, accordingly with the standards of IEC/JIS and Electrical Appliance and Material Safety Law.

- Capable of measuring leakage current in three modes
- Eight built-in measurement circuit networks
- Up to 30 mA for RMS measurement
- Easy-to-understand operation
- Enables the continuous execution of tests
- Capable of saving test results
- 51 types of standard test conditions are preset
- Lets you manage the calibration time limit
- USB interface provided as standard



Leakage Current Tester

Capable of measuring leakage current in three modes

Touch current (TC) operating mode*

Enables you to measure the touch current flowing between the enclosure (accessible portion) of the electrical equipment under test (EUT) and the power line incorporating the earth wire, via Measuring Devices. For Measuring Devices, eight measurement circuit networks (NTWKs) conforming to the applicable standards are provided as standard. The switching of the polarities of the power line to the EUT, as well as singlefault conditions, are automatically set with relays inside the tester.

Protective conductor current (PCC) operating mode*

Enables you to measure the current flowing through the protective conductor (earth wire) by connecting the power plug (NEMA5-15 or an equivalent) of an item of 100 V electrical equipment to the socket on the front panel. A multi-outlet is available as an option (sold separately) to accommodate the different plugs used around the world.

Meter (METER) operating mode

In the same way as an ordinary multimeter, enables you to measure voltage and current using measurement terminals A and B on the front panel. For voltage measurement, it offers a "safety extra low voltage" (SELV) detection function; for current measurement, it offers a measurement function using measurement circuit networks (NTWKs). *TC=Touch Current PCC=Protective Conductor Current

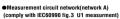
Easy-to-understand operation

Simple operation is possible thanks to the intuitively understandable test condition menu and the function keys/rotary knobs.

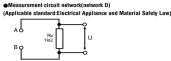
[Setting screen for touch current (TC) measurement]

Enables the continuous execution of tests Allows you to automatically conduct TC and PCC tests as a single sequence program by setting their test conditions as up to 100 independent tests (steps). You can set up to 100 sequence programs, with up to 500 steps in total. To support automation test,

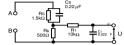
measurement point (probe setting) can be switched over without

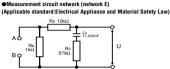

[Setting screen for auto tests]

Up to 30 mA for RMS measurement

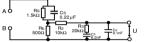

Capable of measuring 30 µA to 30 mA for DC/RMS measurement and 50 µA to 90 mA for PEAK measurement, both in three ranges. Two range switching functions are provided, namely, a fixed range function (FIX) and auto range function (AUTO), which conform to the current to be measured. For RMS measurement, the "true root-mean-square value" is achieved.

Eight built-in measurement circuit networks


It offers built-in eight measurement circuit networks for measuring the touch current of general electrical equipment.



 Measurement circuit network(network B) (comply with IEC60990 fig.4 U2 mea ment)



Measurement circuit net vork(network B1) (comply with JEC60990 fig.4 U1 measurm

٨d

Measurement circuit network(network C) (comply with IEC60990 fig.5 U3 measurement)

nt circuit network (i (Applicable standard:IEC60745 etc.) ٩Ŷ

в

Capable of saving test results

For independent tests, enables you to save not only test results but also the test date and time and the test conditions for up to 50 tests; for auto tests, you can save this data for up to 50 programs. You can also save the test results as external records using the USB and other interfaces.

51 types of standard test conditions are preset

The memory in the main unit is pre-written with 51 types of test conditions for general electrical equipment, which conform to IEC 60990 and the standards listed below. You can set the standard test conditions merely by calling them.

[Standards covered by the memory]			
Standard No. Applicable electrical equipment			
IEC60950	Information technology equipment		
IEC60335	Household and similar electrical appliances		
IEC60065	Audio, video and similar electronic apparatus		
IEC60745	5 Hand-held motor-operated electric tools		
IEC60598	Luminaires		
IEC61010	Electrical equipment for measurement, control, and laboratory use		
Electrical Appliance and Material Safety Law	d Electrical appliances		
IEC61029	Transportable motor-operated electric tools		

Lets you manage the calibration time limit

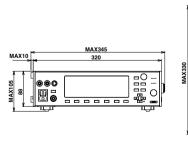
For independent tests, enables you to save not only test results but also the test date and time and the test conditions for up to 50 tests; for auto tests, you can save this data for up to 50 programs. You can also save the test results as external records using the USB and other interfaces.

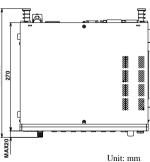
USB interface provided as standard

In addition to the SIGNAL I/O, GPIB, and RS-232C interfaces, a USB interface is also provided as standard.

Range of other functions

- "MAX function." which retains the largest current measured.
- "CONV function," which converts the measured current value into the corresponding value for the preset power voltage.
- . "SELV function," which causes the DANGER lamp to turn ON if a preset safety extra low voltage (SELV) is exceeded in meter measurement mode.
- · "CHECK function," which performs self-analysis of the measurement circuit networks.


Leakage Current Tester


Measurer	ent item, measure		3 types, namely, touch current (TC) measurement	
Measurement item			3 types, namely, touch current (TC) measurement, protective conductor current (PCC) measurement, and METER	
	TC		Measure the voltage drop across the reference resistor, using a measurement circuit network (NTWK), and then calculate the curren	
Measurement method	PCC		Measure the voltage drop across the reference resistor connected to the protective earth wire, and then calculate the current.	
	METER		Measure the voltage and current using the measurement terminals	
Measuren			DC/RMS/PEAK (RMS being the true root-mean-square value)	
	Network A		Basic measurement element: $(1.5 \text{ k}\Omega//0.22 \mu\text{F})$ + 500 Ω	
Measurement circuit network (NTWK)	Network B/B1		Basic measurement element: $(1.5 \text{ k}\Omega//0.22 \mu\text{F})$ + 500 $\Omega//(10 \text{ k}\Omega + 0.022 \mu\text{F})$	
	Network C		Basic measurement element: $(1.5 \text{ k}\Omega//0.22 \mu\text{F}) + 500 \Omega//(10 \text{ k}\Omega + (20 \text{ k}\Omega + 6.2 \text{ n}\text{F})//9.1 \text{ n}\text{F})$	
	Network D		Basic measurement element: 1 kQ	
	Network E		Basic measurement element: $1 \text{ k}\Omega//(10 \text{ k}\Omega + 11.225 \text{ nF} + 579 \Omega)$	
	Network F		Basic measurement element: $1.5 \text{ k}\Omega//0.15 \mu\text{F}$	
	Network G		Basic measurement element: 2 kΩ	
	constant tolerance		Resistance: ±0.1%, capacitor 0.15 µF: ±2%, other: ±1%	
Current m	easurement sectio	n	1	
Measurement	Range 1		DC/RMS: 30 µA to 600 µA, PEAK: 50 µA to 850 µA (*3)	
range	Range 2		DC/RMS: 125 µA to 6.00 mA, PEAK: 175 µA to 8.50 mA (*3)	
-	Range 3		DC/RMS: 1.25 mA to 30.0 mA, PEAK: 1.75 mA to 90.0 mA (*3	
Range sw			AUTO/FIX	
Measured	current (i) display	/resolution	i < 1mA: $\square\square \mu A/1 \mu A$, 1 mA \leq i < 10 mA: $\square\square mA/0.01$ mA 10 mA \leq i < 100 mA: $\square\square mA/0.1$ mA	
		DC	±(5.0% of rdng + 20 μA)	
	Dense 1	RMS	$15 \text{ Hz} \le f \le 10 \text{ kHz}: \pm (2.0\% \text{ of rdng} + 8 \mu\text{A})$	
	Range 1		$10 \text{ kHz} < f \le 1 \text{ MHz: } \pm (5.0\% \text{ of rdng} + 10 \ \mu\text{A})$	
		PEAK	$15 \text{ Hz} \le f \le 10 \text{ kHz}$: $\pm (5.0\% \text{ of rdng} + 10 \mu\text{A})$	
		DC	±(5.0% of rdng + 50 µA)	
		RMS	$15 \text{ Hz} \le f \le 10 \text{ kHz}$: $\pm (2.0\% \text{ of rdng} + 20 \mu\text{A})$	
Measurement	Range 2		10 kHz < f ≤ 1 MHz: ±(5.0% of rdng + 20 μA)	
accuracy(*5)		PEAK	$15 \text{ Hz} \le f \le 1 \text{ kHz}: \pm (2.0\% \text{ of rdng} + 50 \ \mu\text{A})$	
			$1 \text{ kHz} < f \le 10 \text{ kHz}: \pm (5.0\% \text{ of } rdng + 50 \ \mu\text{A})$	
		DC	±(5.0% of rdng + 0.5 mA)	
		RMS	$15 \text{ Hz} \le f \le 10 \text{ kHz}: \pm (2.0\% \text{ of rdng} + 0.2 \text{ mA})$	
	Range 3		10 kHz < f ≤ 1 MHz: ±(5.0% of rdng + 0.2 mA)	
		PEAK	$15 \text{ Hz} \le f \le 1 \text{ kHz}: \pm (2.0\% \text{ of rdng} + 0.5 \text{ mA})$	
			$1 \text{ kHz} < f \le 10 \text{ kHz}: \pm (5.0\% \text{ of rdng} + 0.5 \text{ mA})$	
Input resis	stance, input capac	itance	1 MΩ±1%, < 200 pF	
	mode rejection rat		$f \le 10 \text{ kHz}$: 60 dB or greater, 10 kHz < $f \le 1 \text{ MHz}$: 40 dB or greater	
Judgemen	-			
Judgemen			Pass/fail judgement by setting upper and lower current limits in window comparator mod	
Judgemen			U-FAIL for currents above the upper limit; L-FAIL for currents below the lower limit	
Display, e			U-FAIL/L-FAIL/PASS display, buzzer sounding	
PASS hole			The time for which a PASS judgement is retained can be set to 0.2 s to 10.0 s or to HOLI	
1100 100	Range 1		DC/RMS: 30 µA to 600 µA, PEAK: 50 µA to 850 µA (*4)	
Setting	Range 2		DC/RMS: 151 µA to 6.00 mA, PEAK: 213 µA to 8.50 mA (*4)	
range	Range 3		DC/RMS: 1.51 mA to 30.0 mA, PEAK: 2.13 mA to 90.0 mA (*4	
Indoemen	t accuracy		Conforms to measurement accuracy. (Read rdng as set.)	
	nent of voltage bet	ween A and B	contoning to measurement accuracy. (read rang as seti)	
Measuren			DC/RMS: 10.000 V to 300.0 V, PEAK: 15.000 V to 430.0 V	
Accuracy	8		$\pm(3\% \text{ of rdng} + 2V)$, measurement range fixed at AUTO	
Input imp	edance		Approx. 40 MΩ	
SELV detection			Approx. 40 MS2 Set the SELV to detect; if this value is exceeded, the DANGER lamp is turned ON	
SELV sett			10 V to 99 V, in 1-V steps, OFF function provided	
	t execution function	on, memorv		
	Test wait time	,,	Setting range: 0 s to 999 s, accuracy: ±(100 ppm of set + 20 ms	
Timer	Test time		Setting range: 1 s to 999 s/OFF function, accuracy: ±(100 ppm of set + 20 ms)	
Text execution			Auto test (AUTO): Automatic execution of up to 100 steps (test conditions) Independent test (MANUAL): Independent execution of TC, PCC, or METER measurement	
	Test conditions		AUTO: Up to 100 sequence programs can be saved (up to 500 steps in total). MANUAL: Up to 100 sequence programs can be saved.	
Memory	7 Test results		The user can select whether to save the judgement results when the are output at the end of the tests. AUTO: Test results for up to 50 programs can be recorded. MANUAL: Test results for up to 50 test can be recorded.	

Measured value conversion (CONV)		Converts the measured current value into the corresponding value at the preset power voltage		
		Setting range: 80.0 V to 300.0 V, OFF function provided		
MEASURE MODE		Selects a measured value from those below		
		NORM: Displays the measured value in the measurement period		
		MAX: Displays the largest measured value in the measurement period		
Power posi	tive/negative phase selection (POL)	NORM: Positive phase connection, REVS: Negative phase connection		
	It selection (COND)	NORM: Normal, FLTNEU: Disconnection of the neutral wire, FLTPE: Disconnection of the protective earth wire		
Earth chec	k	Generates CONTACTFAIL if the enclosure is grounded in a TC (EncLiv, EncNeu) test		
MEASUR	E CHECK	Checks the measurement function between measurement terminals A and		
		B, and places the tester in the PROTECTION state if an error is detected		
Voltage m	easurement(EUT)	Measurement range: 80.0 V to 250.0 V, resolution: 0.1 V, accuracy: ±(3% of rdng + 1 V)		
Current m	easurement(EUT)	Measurement range: 0.1 A to 15.00 A, resolution: 0.01 A, accuracy: ±(5% of rdng + 30 mA)		
Power mea	asurement (effective power)	Measurement range: 10 W to 1500 W		
	· • ·	Accuracy (at a power voltage of 80 V or higher and a load power factor of 1): ±(5% of rdng + 8 W)		
	Recording	Items: Calibration date and time, test date and time, permissible date and time: Up to 2099		
System	Calibration time limit	Enables the setting of a calibration time limit. Once this time has passed, a warning is output at power on		
clock	management(CAL PROTECT)	ON: Places the tester in the PROTECTION state (disables the use of the tester), OFF: Displays warning.		
Protective	operation	Relay operation error, overload, over range, measurement function check, failure of internal battery, etc.		
Interface	operation	······································		
RS-232C		D-Sub 9-pin connector (conforming to EIA-232D), baud rate: 9600/19200/ 38400 bps (For connection to a PC, use a "9-pin female-female reverse" cable.)		
GPIB		Conforms to IEEE Std. 488-1978. (SH1,AH1,T6,TE0,L4,LE0,SR1,PP0,DC1,DT0,C0,E1)		
USB		USB Specification2.0		
REMOTE		6-pin MINIDIN connector (for HP21-TOS (separately sold option) only)		
SIGNAL I		25-pin D-Sub connector		
General		1 ~		
	Rated voltage/current	Terminals A to B: 250 V, terminal to chassis: 250 V, 100 mA		
Measurement	Measurement category	CAT II		
erminals	Effective terminal display	Terminals effective to measurement are indicated with LED lamps.		
	Specification assured range	Temperature: 5°C to 35°C, humidity: 20% rh to 80% rh (no condensation)		
	Operating range	Temperature: 0°C to 40°C, humidity: 20% rh to 80% rh (no condensation)		
Environment	Storage range	Temperature: -20°C to 70°C, humidity: 90% rh or less (no condensation)		
	Mounting location	Indoors, altitude of 2000 m or less		
	Input power	Nominal input rating: 100Vac to 240Vac, 50/60Hz, power consumption: 70 VA max.		
Power	for EUT	Nominal input rating:100Vac to 240Vac, 50/60Hz		
10.00	101 201	Rated output capacity: 1500 VA, maximum current: 15 A, rush current: 70 A peak max. (within 20 ms)		
Insulation	resistance	$30 \text{ M}\Omega$ or greater (500 Vdc) (between AC line and chassis, between measurement terminal and chassis)		
Withstand	voltage	1390 Vac, 2 seconds/20 mA or less (between AC line and chassis)		
Ground bo	ond	25 Aac/0.1 Ω or less		
Safety (*1)		Conforms to the requirements of the directive and standard below. Low Voltage Directive 2006/95/EC, EN61010-1 (Class I, Pollution degree 2)		
Electromagnetic compatibility (*1, *2)		Conforms to the requirements of the directive and standard below. EMC Directive 2004/108/EC, EN61326, EN61000-3-2 EN61000-3-3, Applicable conditions: All cables and wires use to connect to this product must be shorter than 3 meters. Use the supplied test leads.		
Outside dimensions, weight		320[12.60 inch] (345[13.58 inch]) W × 88[3,46 inch] (105[4.13 inch]) H × 270[10.63 inch] (335[13.19 inch]) D mm, approx. 5 kg(approx. 11.02 lbs)		
Accessories		1 set of test leads (TL21-TOS: red and black, one each, with alligator clips) 1 flat probe (FP01-TOS), 1 spare fuse (15A, for EUT power) 1 instruction manual, 1 circuit principle diagram sticker 2 power cords (for the tester and for the EUT AC line)		

Ì

-External dimensional diagrams-

The warm-up time must be 30 minutes or longer.
rdng denotes a reading, set denotes the set value, and EUT is the electrical equipment under test.

*1. May not apply to custom-made or modified products.
*2. Limited to products with CE marking on their panels.
*3. The maximum range is indicated. The range differs depending on the measurement circuit network.
*4. The maximum range is indicated. The range differs depending on the measurement circuit network. Also, the UPPER setting in each range when the FIX range is selected is indicated.
*5. Current converted value in Network A,B,C and PCC measurement, based on built-in voltmeter accuracy.

Others

High-Voltage Digital Voltmeter

∎149-10A

- Measurement of high voltages (AC/DC) of up to 10 kV maximum.
- Large 41/2 digit LED display
- High measuring accuracy and input resistance
- Light weight of only 3.2 kg
- Compact design
- Excellent ease of maintenance

Specifications		
Operating System	Double integration system (sampling	
	cycle: 3 times/sec)	
DC Voltage	Measuring range: 0.500kV to 10,000kV	
	Accuracy: ±(0.5% of reading + 0.03% of range)	
	Input resistance: 1000 M $\Omega \pm 2\%$	
AC Voltage	Measuring range: 0.500kV to 10,000kV	
	Accuracy: ±(1% of reading + 0.05% of range)	
	Frequency characteristics: 50/60 Hz	
	(sine wave rms value display of mean	
	value response)	
	Input resistance: 1000 M $\Omega \pm 2\%$	
Power Requirements	100V±10%, approx. 10 VA	
Dimensions (MAX)	134[5.27 inch] W x 164[6.46 inch] H	
	× 270[10.63 inch] D mm	
	(140[5.51 inch]W x 189[7.44 inch]	
	H x 350[13.78 inch]D mm)	
Weight	approx. 3 kg(approx. 6.61 lbs)	
Accessories	TL05-TOS high-voltage test lead: 1	
	HTL-2.5DH high-voltage coaxial cable: 1	

Hipot Tester Current Calibrator

■TOS1200

- Calibration of Leakage Current Detection Sensitivity
- Direct Reading of Error from Error Display Scale
- Ammeter Ranges
- Eliminates Need for Power Supply
- AC/DC Selection Switch

Specifications					
Measuring H		Measurement of current values and error(%) for AC (50/60 Hz) and DC at a test voltage of 1000 V			
Measuring	Ranges	8 ranges consisting of 0.5/1/2/5/10/20/50/100 mA along with values equal to 0.8 times the values of those ranges (for 1, 2, 4 and 8 steps)			
Ammeter Scale		Main scale: Direct-reading error display scale over a range of $\pm 10\%$ of the above full scale values Auxiliary scale: Ratio scale of 0 to 1.1 times the above full scale values (equivalent to 0% display of main scale when the ratio is equal to 1)			
Ammeter A	ccuracy	Main scale: ±1% of reading Auxiliary scale: ±3% of full scale value			
Ammeter In	dication	DC/AC(sine wave rms value calibration of mean value response)			
Load Resista	ince				
Range[mA]	Resistance	[kΩ]	Range[mA]	Resistance[kΩ]	
0.5	2000	,	10	100	
1	1000)	20	50	
2	500		50	20	
5	200		100	10	
Allowed Inp	out Time	0.5/1/2/5 mA ranges: Continuous 10/20/50/100 mA ranges: 60 sec. Max. 1/3 of duty cycle			
Dimensions	(MAX)	134[5.27 inch] W x 164[6.46 inch] H x 270[10.63 inch] D mm (140[5.51 inch]W x 189[7.44 inch]H x 320[12.60 inch]D mm)			
Weight		approx. 3.5 kg(approx. 7.72 lbs)			
Accessories		TL04-TOS high-voltage test lead: 1			

UL Resistance Load

■RL01-TOS

This device is described in section 125, paragraph 2-1B1 of UL1492. The RL01-TOS is a variable load resistor for checking the output voltage of hipot testers used in dielectric strength testing on production lines. (Complies with UL regulations including UL1270, UL1409 and UL1410.)

Specifications		
Resistors:	120, 159, 210, 279, 369, 489, 648,	
	858, 1,137, 1,500, 1,989 and 2,148 kW	
Resistance Accuracy	+1%,-0% of nominal value when set to	
	120 kW, ±1% of nominal value when	
	set to other values	
Maximum Operating Voltage	1300 V (continuous rating)	
Maximum Overload Voltage	1400 V for 5 seconds (application may	
	not be repeated within 1 minute)	
Dimensions (MAX)	200[7.87 inch] W x 100[3.94 inch] H	
	× 260[10.24 inch] D mm	
	(210[8.27 inch]W × 120[4.72 inch]	
	H × 295[11.61 inch]D mm)	
Weight	approx. 2.6 kg(approx. 5.73 lbs)	
Accessories	TL04-TOS high-voltage test lead: 2	
	TL05-TOS high-voltage test lead: 1	

Calibration Resistor for Insulation Resistance Tester

■929-1M ■929-10M ■929-100M

The 929 Series Standard Resistors are for calibration of Insulation Testers.

Specifications				
Model	929-1M	929-10M	929-100M	
Nominal resistance	1MΩ	10MΩ	100MΩ	
Accuracy of resistance	1 % at 25°C ±10°C			
Temperature coefficient	100 ppm/°C or better		etter	
Voltage coefficient	1 ppm/V or better			
Working voltage rating		1.2 kV		
Dimensions (MAX)	64[25.20 inch] W × 24[9.45 inch] H ×		5 inch] H ×	
	30[11.81 incl	n] D mm		

*The 929 series standard resistors can not be installed directly to the TOS series. Please use the test lead for connection.

Option

Test Lead

TL01-TOS

[cable length: 1.5 m/max. operating voltage: 5 kV]

■TL02-TOS

[cable length: 3 m/max. operating voltage: 5 kV]

TL03-TOS

[cable length: 1.5 m/max. operating voltage: 10 kV]

■TL04-TOS

[cable length: 1.5 m/max. operating voltage: 5 kV (for TOS1200, RL01-TOS)]

TL05-TOS

[cable length: 1.5 m/max. operating voltage: 5 kV (for 149-10A, RL01-TOS)]

■TL06-TOS

[cable length: 0.5 m/max. operating voltage: 5 kV (for parallel connection of TOS9220/9221)]

■TL07-TOS

[cable length: 1.5 m/max. operating voltage: 5 kV (for TOS9220/9

TL08-TOS

[cable length: 1.5 m/max. operating voltage: 1 kV (for TOS7200)]

■TL11-TOS

[cable length: 1.5 m/max. operating current: 30 A (for TOS6200)]

■TL12-TOS [cable length: 1.5 m/max. operating current: 60 A (for TOS6210)]

■TL21-TOS[cable length: 1.5 m(for TOS3200)]

■TL31-TOS [cable length: 1.5 m/max. operating voltage: 5 kV (for TOS5300 Series)]

■TL32-TOS [cable length: 3 m/max. operating voltage: 5 kV (for TOS5300 Series)]

■HTL-2.5DH [cable length: 1.5 m/max. operating voltage: 10 kV (for 149-10A)]

Remote Control Box

RC01-TOS *1*2

[one-hand operation/dimensions: 200W × 70H × 39D mm] Accessory cable length: 1.5 m

■RC02-TOS *1*2

[both-hands operation/dimensions: 330W × 70H × 39D mm] Accessory cable length: 1.5 m

- *1: The optional Adaptor DD-5P/6P is required for the connection with TOS7200.
- *2: The optional Adaptor DD-5P/9P is required for the connection with TOS5300 Series.

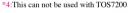
DIN Cable

- ■DD-3 5P
- [cable length: 3 m/DIN plug to DIN plug]

■DD-5P/6P [Adaptor / DIN to Mini DIN]

DD-5P/9P [Adaptor /DIN to Mini DIN]

Test Probe


HP01A-TOS *3

[cable length: 1.8 m/max. operating voltage: 4 kV AC(RMS), 5kV DC]

■HP02A-TOS *3 *4

[cable length: 3.5 m/max. operating voltage: 4 kV AC(RMS), 5kV DC]

*3:The optional Adaptor DD-5P/9P is required for the connection *3: The optional Adaptor DD-5P/9P is r with TOS5300 Series.
*4: This can not be used with TOS7200.

■HP11-TOS

[cable length:1.8m/max.operating voltage:1kV DC/ max.operating current:100mA (for TOS7200)]

HP21-TOS

[cable length:1.8m/max.operating voltage:250Vrms/ max.operating current:100mA (for TOS3200)]

Option

■LP01-TOS

[cable length: 2 m/max. operating current: 30 A (for TOS6200)]

■LP02-TOS

[cable length: 2 m/max. operating current: 60 A (for TOS6210)]

■FP01-TOS (flat probe for TOS3200)

Buzzer Unit

■BZ01-TOS (for 100V AC) * This can not be used with TOS6200, TOS9200/9201, TOS7200

Warning Light Unit

■PL01-TOS (for 100V AC) * This can not be used with TOS6200, TOS9200/9201, TOS7200

■PL02-TOS (for 24V DC) * for TOS9200/9201, TOS5300 Series

Multi Outlet

■OT01-TOS (multi outlet for TOS3200)

Terminal Unit ■TU01-TOS (for TOS5300 Series)

This is a terminal unit for converting a 25-pin SIGNAL I/O connector of TOS5300/5301/5302 to a 14-pin SIGNAL I/O connector of TOS5050A/5051A. By connecting via this product, the external control performed with TOS5050A/5051A can be performed with TOS5300/5301/5302 at the same time.

	Rack Mount Bracket				
Product Name	JIS Standard	EIA Standard			
	Bracket Model No	Bracket Model No.			
TOS9201	KRB150-TOS	KRB3-TOS			
TOS9213AS	KRB150-TOS	KRB3-TOS			
TOS9200	KRB150-TOS	KRB3-TOS			
TOS9220	KRB100-TOS	KRB2-TOS			
TOS9221	KRB100-TOS	KRB2-TOS			
TOS8870A	KRB150-TOS	KRB3-TOS			
TO\$5302	KRA200-TOS	KRA4-TOS			
TO\$5301	KRA200-TOS	KRA4-TOS			
TO\$5300	KRA200-TOS	KRA4-TOS			
TOS6200	KRB100-TOS	KRB2-TOS			
TOS6210	KRB100-TOS	KRB2-TOS			
TO\$3200	KRB150-TOS	KRB3-TOS			

KIKUSUI ELECTRONICS CORPORATION

1-1-3, Higashiyamata, Tsuzuki-ku, Yokohama, 224-0023, Japan Phone: (+81) 45-593-7570, Facsimile: (+81) 45-593-7571, www.kikusui.co.jp

KIKUSUI AMERICA, INC.1-877-876-2807 www.kikusuiamerica.com

530 Lakeside Drive, Suite#180, Sunnyvale, CA 94085, U.S.A. Phone : 408-733-3432 Facsimile : 408-733-1814

KIKUSUI TRADING (SHANGHAI) Co., Ltd. www.kikusui.cn Room, D-01,11F, Majesty Bld, No.138, Pudong Ave, Shanghai City Phone : 021-5887-9067 Facsimile : 021-5887-9069

For our local sales distributors and representatives, please refer to "sales network" of our website.

•Distributor:

All products contained in this catalogue are equipment and devices that are premised on use under ■ All products contained in this catalogue are equipment and devices that are premised on use under the supervision of qualified personnel, and are not designed or produced for home-use or use by general consumers. ■ Specifications, design and so forth are subject to change without prior notice to improve the quality.■ Product names and prices are subject to change and production may be discontinued when necessary.■ Product names, company names and brand names contained in this catalogue represent the respective registered trade name or trade mark.■ Colors, textures and so torth in photographs shown in this catalogue may differ from actual products due to a limited fidelity in printing.■ Although every effort has been made to provide the information as accurate as possible for this catalogue, certain details have unavoidably been omitted due to limitations in space.■ If you find any misprints or errors in this catalogue, it would be appreciated if you would inform us. ■Please contact our distributors to confirm specifications, price, accessories or anything that may be unclear when placing an order or concluding a purchasing agreement. ■ Destrot dire Jaceson

Printed in Japan

Issue:Aug.2013 2013080.2KPRIEC71