Series 3700A

System Switch/Multimeter and Plug.In Cards

The Series 3700A offers scalable, instrument grade switching and multi-channel measurement solutions that are optimized for automated testing of electronic products and components. The Series 3700A includes four versions of the Model 3706A system switch mainframe along with a growing family of plug-in switch and control cards. When the Model 3706A mainframe is ordered with the high performance multimeter, you receive a tightly integrated switch and measurement system that can meet the demanding application requirements in a functional test system or provide the flexibility needed in stand-alone data acquisition and measurement applications.

Maximizes System Control and Flexibility

To provide users with greater versatility when designing test systems, the Series 3700A mainframes are equipped with many standard features. For example, easy connectivity is supported with three remote interfaces: LXI/Ethernet, General Purpose Interface Bus (GPIB), and Universal Serial Bus (USB). Fourteen digital I/O lines are also included, which are programmable

- Six-slot system switch mainframe with optional high performance multimeter
- Multi-processor architecture optimized for high throughput scanning and pattern switching applications
- Remote PC control via Ethernet, USB, and GPIB interfaces
- Up to 576 two-wire or 720 onewire multiplexer channels in one mainframe
- Up to 2,688 one-pole matrix crosspoints in one mainframe
- Embedded Test Script Processor (TSP ${ }^{\circledR}$) offering unparalleled system automation, throughput, and flexibility
- master/ slave connection provides easy system expansion and seamless connection to Series 2600 and 2600B
s
- Capable of over 14,000 readings per second to memory with optional high performance multimeter
- LXI interface with embedded Web browser interface for test setup, maintenance, and basic application control and can be used to control external devices such as component handlers or other instruments. Additionally, system control can be greatly enhanced by using our Test Script Processor (TSP) technology. This technology provides "smart" instruments with the ability to perform distributed processing and control at the instrument level versus a central PC.

High Quality Switching at a Value Price

The Series 3700A builds upon Keithley's tradition of producing innovative, high quality, precise signal switching. This series offers a growing family of high density and general purpose plug-in cards that accommodates a broad range of signals at very competitive pricing. The Series 3700A supports applications as diverse as design validation, accelerated stress testing, data acquisition, and functional testing.

Model 3706A Mainframe

The Series 3700A includes the base Model 3706A system switch/multimeter mainframe with three options for added flexibility. This mainframe contains six slots for plug-in cards in a compact 2 U high (3.5 inches $/ 89 \mathrm{~mm}$) enclosure that easily accommodates the needs of medium to high channel count applications. When fully loaded, a mainframe can support up to 576 two-wire multiplexer channels or 2,688 one-pole matrix crosspoints for unrivaled density and economical per channel costs.

High Performance, 7½-digit Multimeter (DMM)

The high performance multimeter option provides up to $71 / 2$-digit measurements, offering 26 -bit resolution to support your ever-increasing test accuracy requirements. This flexible resolution supplies a DC reading rate from $>14,000$ readings/second at $31 / 2$ digits to 60 readings/second at $71 / 2$ digits to accommodate a greater span of applications. The multimeter does not use a card slot, so you maintain all six slots in your mainframe. In addition, the multimeter is wired to the mainframe's analog backplane, ensuring a high quality signal path from each card channel to the multimeter.

The multimeter supports 13 built-in measurement functions, including: $\mathrm{DCV}, \mathrm{ACV}, \mathrm{DCI}$,

Single Channel Reading Rates

NPLC	DCV/ 2 Wire Ohms	4 Wire Ohms
$\mathbf{1 . 0}$	60	29
$\mathbf{0 . 2}$	295	120
$\mathbf{0 . 0 6}$	935	285
$\mathbf{0 . 0 0 6}$	6,200	580
$\mathbf{0 . 0 0 0 5}$	14,100	650

Distributed By:
Signal Test, Inc
1529 Santiago Ridge Way
San Diego, CA 92154
Tel. 1-619-575-1577 USA
www.SignalTestInc.com
Sales@SignalTestInc.com

Series 3700A

Ordering Information

Mainframes

3706A Six-slot system switch with high performance DMM
3706A-NFP
Six-slot system switch with high performance DMM, without front panel display and keypad
3706A-S Six-slot system switch
3706A-SNFP
Six-slot system switch, without front panel display and keypad

Plug-in Cards

3720 Dual 1×30 multiplexer card (auto CJC when used with 3720-ST)
3721 Dual 1×20 multiplexer card (auto CJC when used with 3721-ST)
3722 Dual 1×48, high density, multiplexer card
3723 Dual 1×30, high speed, reed relay multiplexer card
3724 Dual 1×30 FET multiplexer card
3730 6x16, high density, matrix card
$3731 \quad \begin{aligned} & 6 \times 16 \text { high speed, reed } \\ & \text { relay matrix card }\end{aligned}$
3732 Quad 4×28, ultrahigh density, reed relay matrix card
$3740 \quad 32$ channel isolated switch card
3750 Multifunction control card

Accessories Supplied
Test Script Builder
Software Suite CD
Ethernet Crossover
Cable (CA-180-3A)
Series 3700A Product CD
(includes LabVIEW ${ }^{\text {® }}$, IVI C,
and IVI.COM drivers)

System Switch/Multimeter and Plug-In Cards

Measurement capabilities of the high performance multimeter

ACCESSORIES AVAILABLE

| GPIB INTERFACES AND CABLES | | | SERVICES AVAILABLE |
| :--- | :--- | :--- | :--- | :--- | :--- |

Series 3700A

System Switch/Multimeter and Plug-In Cards

TSP Distributed Control Increases Test Speed and Lowers Test Cost

TSP technology enhances instrument control by allowing users the choice of using standard PC control or of creating embedded test scripts that are executed on microprocessors within the instrument. By using TSP test scripts instead of a PC for instrument control, you avoid communication delays between the PC controller and instrument, which results in improved test throughput. Test scripts can contain math and decisionmaking rules that further reduce the interaction between a host PC and the instrument.

This form of distributed control supports the autonomous operation of individual instruments or groups of instruments and can possibly remove the need for a high level PC controller, which lowers test and ownership costs. This is the same proven TSP technology found in our innovative Series 2600B System SourceMeter ${ }^{\circledR}$ SMU instruments.

TSP-Link Technology for Easy and Seamless System Coordination and Expansion

If your channel density requirements grow or if you need to process more signal types, use TSP-Link Technology to expand your system. The TSPLink master/slave connection offers easy system expansion between Series 3700A mainframes. You can also use TSP-Link Technology to connect to other TSP-Link enabled instruments such as Series 2600B SourceMeter SMU instruments. Everything connected with TSP-Link can be controlled by the master unit, just as if they were all housed in the same chassis.

This high speed system expansion interface lets users avoid the complex and time consuming task of expanding their remote interfaces to another mainframe. There is no need to add external triggers and remote communication cables to individual instruments, since all TSP-Link connected devices can be controlled from a single master unit.

Test Script Builder Software Suite

Test Script Builder is a software tool that is provided with all Series 3700A instruments to help users easily create, modify, debug, and store TSP test scripts. It supplies a project/file manager window to store and organize test scripts, a text-sensitive program editor to create and modify test TSP code, and an immediate instrument control window to send Ethernet, GPIB, and USB commands and to receive data from the instrument. The immediate window also allows users to see the output of a given test script and simplifies debugging.

Test Script Builder Software Suite

L///IIV Version 1.4

LXI Core 2011 with LXI Clock Synchronization, LXI Timestamped Data, LXI Event Messaging, LXI Event Log.

Transportable Memory, USB 2.0 Device Port

All Model 3706A mainframes contain a USB device port for easy transfer of readings, configurations, and test scripts to memory sticks. This port, which is located on the front panel, provides you with easy access to and portability of measurement results. Simply plug in a memory stick and, with a few simple keystrokes, gain access to virtually unlimited memory storage. Additional capabilities include: saving and recalling system configurations and storage for TSP scripts.

Series 3700A

System Switch/Multimeter and Plug-In Cards

Embedded Web Server

The built-in Web interface offers a quick and easy method to control and analyze measurement results. Interactive schematics of each card in the mainframe support point-and-click control for opening and closing switches. A scan list builder is provided to guide users through the requirements of a scan list (such as trigger and looping definitions) for more advanced applications. When the mainframe is ordered with the multimeter, additional Web pages are included for measurement configuration and viewing, including a graphing toolkit.

Built-in Web Server Interface

1. Configure your switch channels and measurement functions. Configure the DMM to make your measurements at the desired speed, resolution, etc. and assign them to the desired channels.

2. Build and run your automated scan list. The toolkit makes it easy to build and execute an automated sequence of channel-open and channel-close commands and triggered multimeter measurements.

3. Analyze your data. View your results in real-time or historical mode with point-and-click simplicity. Data can be exported directly to your PC in either numerical or graphical formats for presentation or other applications.

Model 3706A front panel

Model 3706A-S front panel

Model 3706A-NFP and Model 3706A-SNFP front panel

Model 3706A rear panel

Series 3700A
 System Switch/Multimeter and Plug-In Cards

High Performance Multimeter Specifications (Rev. A)
DC Specifications
CONDITIONS: 1 PLC or 5 PLC.
For <1PLC, add appropriate "ppm of range" adder from "RMS Noise" table.
Includes rear panel Analog Backplane connector and transducer conversion. Refer to DC Notes for additional card uncertainties.

Function	Range ${ }^{1}$	Resolution	Test Current or Burden Voltage	Input Resistance or Open Circuit Voltage ${ }^{2}$	Accuracy: \pm (ppm of reading + ppm of range) (ppm = parts per million) (e.g., $10 \mathrm{ppm}=\mathbf{0 . 0 0 1 \%}$)			Temperature Coefficient $0^{\circ}-18^{\circ} \mathrm{C}$ and $28^{\circ}-50^{\circ} \mathrm{C}$
					$\begin{gathered} 24 \text { Hour }^{3} \\ 23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 90 \text { Day } \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 1 \text { Year } \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{gathered}$	
Voltage ${ }^{4}$	$100.00000 \mathrm{mV}^{19}$	$0.01 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$ or $10 \mathrm{M} \Omega \pm 1 \%$	$10+9$	$25+9$	$30+9$	$(1+5) /{ }^{\circ} \mathrm{C}$
	$1.0000000 \mathrm{~V}^{19}$	0.1 MV		$>10 \mathrm{G} \Omega$ or $10 \mathrm{M} \Omega \pm 1 \%$	$7+2$	$25+2$	$30+2$	$(1+1) /{ }^{\circ} \mathrm{C}$
	10.000000 V	$1 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$ or $10 \mathrm{M} \Omega \pm 1 \%$	$7+2$	$20+2$	$25+2$	$(1+1) /{ }^{\circ} \mathrm{C}$
	100.00000 V	$10 \mu \mathrm{~V}$		$10 \mathrm{M} \Omega \pm 1 \%$	$15+6$	$35+6$	$40+6$	$(5+1) /{ }^{\circ} \mathrm{C}$
	300.00000 V	$100 \mu \mathrm{~V}$		$10 \mathrm{M} \Omega \pm 1 \%$	$20+6$	$35+6$	$40+6$	$(5+1) /{ }^{\circ} \mathrm{C}$
Resistance ${ }^{\text {4,5,6,7 }}$	1.0000000Ω	$0.1 \mu \Omega$	10 mA	8.2 V	$15+80$	$40+80$	$60+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
	10.000000Ω	$1 \mu \Omega$	10 mA	8.2 V	$15+9$	$40+9$	$60+9$	$(8+1) /{ }^{\circ} \mathrm{C}$
	100.00000Ω	$10 \mu \Omega$	1 mA	13.9 V	$15+9$	$45+9$	$65+9$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$1.0000000 \mathrm{k} \Omega$	$100 \mu \Omega$	1 mA	13.9 V	$20+4$	$45+4$	$65+4$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$10.000000 \mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	$100 \mu \mathrm{~A}$	9.1 V	$15+4$	$40+4$	$60+4$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$100.00000 \mathrm{k} \Omega$	$10 \mathrm{~m} \Omega$	$10 \quad \mu \mathrm{~A}$	14.7 V	$20+4$	$45+5$	$65+5$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$1.0000000 \mathrm{M} \Omega$	$100 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}$	14.7 V	$25+4$	$50+5$	$70+5$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$10.000000 \mathrm{M} \Omega$	1Ω	$0.64 \mu \mathrm{~A} / / 10 \mathrm{M} \Omega$	6.4 V	$150+6$	$200+10$	$400+10$	$(70+1) /{ }^{\circ} \mathrm{C}$
	$100.00000 \mathrm{M} \Omega$		$0.64 \mu \mathrm{~A} / / 10 \mathrm{M} \Omega$	6.4 V	$800+30$	$2000+30$	$2000+30$	$(385+1) /{ }^{\circ} \mathrm{C}$
Dry Circuit Resistance ${ }^{6,8}$	1.0000000Ω	$1 \mu \Omega$	10 mA	27 mV	$25+80$	$50+80$	$70+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
	10.000000Ω	$10 \mu \Omega$	1 mA	20 mV	$25+80$	$50+80$	$70+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
	100.00000Ω	$100 \mu \Omega$	$100 \mu \mathrm{~A}$	20 mV	$25+80$	$90+80$	$140+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$1.0000000 \mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}$	20 mV	$25+80$	$180+80$	$400+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$2.0000000 \mathrm{k} \Omega$	$10 \mathrm{~m} \Omega$	$5 \mu \mathrm{~A}$	20 mV	$25+80$	$320+80$	$800+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
Continuity (2W)	$1.000 \mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	1 mA	13.9 V	$40+100$	$100+100$	$100+100$	$(8+1) /{ }^{\circ} \mathrm{C}$
Current ${ }^{9}$	$10.000000 \mu \mathrm{~A}$	1 pA	$<61 \mathrm{mV}$		$40+50$	$300+50$	$500+50$	$(35+9) /{ }^{\circ} \mathrm{C}$
	$100.00000 \mu \mathrm{~A}$	10 pA	$<105 \mathrm{mV}$		$50+9$	$300+30$	$500+30$	$(50+5) /{ }^{\circ} \mathrm{C}$
	1.0000000 mA	100 pA	$<130 \mathrm{mV}$		$50+9$	$300+30$	$500+30$	$(50+5) /{ }^{\circ} \mathrm{C}$
	10.000000 mA	1 nA	$<150 \mathrm{mV}$		$50+9$	$300+30$	$500+30$	$(50+5) /{ }^{\circ} \mathrm{C}$
	100.00000 mA	10 nA	<0.4 V		$50+9$	$300+30$	$500+30$	$(50+5) /{ }^{\circ} \mathrm{C}$
	1.0000000 A	100 nA	<0.6 V		$200+60$	$500+60$	$800+60$	$(50+10) /{ }^{\circ} \mathrm{C}$
	3.0000000 A	$1 \mu \mathrm{~A}$	<1.8 V		$1000+75$	$1200+75$	$1200+75$	$(50+10) /{ }^{\circ} \mathrm{C}$

TEMPERATURE

(Displayed in ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$, or K . Exclusive of probes errors.)
THERMOCOUPLES (Accuracy based on ITS-90):

Type	Range	Resolution	90 Day/1 Year, $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ Simulated reference junction	$\begin{aligned} & 90 \text { Day/1 Year, } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \\ & \text { Using } 3720,3721, \\ & \text { or } 3724 \text { Cards } \end{aligned}$	Range	$\begin{aligned} & 90 \text { Day/1 Year, } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \\ & \text { Using } 3720,3721, \\ & \text { or } 3724 \text { Cards } \end{aligned}$	Temperature Coefficient $0^{\circ}-18^{\circ} \mathrm{C}$ and $28^{\circ}-50^{\circ} \mathrm{C}$
J	-150 to $+760^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0{ }^{\circ} \mathrm{C}$	-200 to $-150^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
K	-150 to $+1372{ }^{\circ} \mathrm{C}$	$0.001{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0{ }^{\circ} \mathrm{C}$	-200 to $-150^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
N	-100 to $+1300^{\circ} \mathrm{C}$	$0.001{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0{ }^{\circ} \mathrm{C}$	-200 to $-100^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
T	-100 to $+400^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0{ }^{\circ} \mathrm{C}$	-200 to $-100^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
E	-150 to $+1000^{\circ} \mathrm{C}$	$0.001{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0{ }^{\circ} \mathrm{C}$	-200 to $-150^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
R	+400 to $+1768^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	0 to $+400^{\circ} \mathrm{C}$	$2.3{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
S	+400 to $+1768^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	0 to $+400^{\circ} \mathrm{C}$	$2.3{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
B	+1100 to $+1820^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	+350 to $+1100^{\circ} \mathrm{C}$	$2.8{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$

4-WIRE RTD OR 3-WIRE RTD (100Ω platinum [PT100], D100, F100, PT385, PT3916, or user 0Ω to $10 \mathrm{k} \Omega$) (Selectable Offset compensation On or Off):
For 3-wire RTD, dmm.connect $=$ dmm.CONNECT_FOUR_WIRE, $\leq 0.1 \Omega$ lead resistance mismatching in Input HI and LO. Add $0.25^{\circ} \mathrm{C} / 0.1 \Omega$ of lead resistance mismatch.

4-Wire RTD	-200 to $+630^{\circ} \mathrm{C}$	$0.01{ }^{\circ} \mathrm{C}$	$0.06{ }^{\circ} \mathrm{C}$	$0.003{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
3-Wire RTD	-200 to $+630^{\circ} \mathrm{C}$	$0.01{ }^{\circ} \mathrm{C}$	$0.75{ }^{\circ} \mathrm{C}$	$0.003{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$

THERMISTOR: $2.2 \mathrm{k} \Omega, 5 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$. Not recommended with Model 3724 card. See Model 3724 manual for "Measurement Considerations."
-80 to $+150^{\circ} \mathrm{C} \quad 0.01^{\circ} \mathrm{C} \quad 0.08^{\circ} \mathrm{C} \quad 0.002^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$

System Switch/Multimeter and Plug-In Cards

DC SPEEDS vs. RMS NOISE Single Channel, $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ Operation. 1PLC and 5PLC RMS noise are included in DC specifications.			Digits	RMS Noise ${ }^{16}$, PPM of Range RMS Noise Calculator: Add $2.5 \times$ "RMS Noise" to "ppm of range" (e.g., 10V @ 0.006 PLC) \qquad					Measurements into Buffer (rdgs/s) ${ }^{13}$		Measurement to PC (ms/rdg) Azero Off ${ }^{13}$		
Function	NPLC	Aperture (ms)		100 mV	1 V	10V	100V	300V	Azero On	Azero Off	Ethernet	GPIB	USB
DCV	$5{ }^{14}$	83.3 (100)	71/2	1.0	0.07	0.05	0.7	0.2	9.5 (8)	12 (10)	86.3 (104)	86.1 (102.8)	86.3 (103.1)
	1^{14}	16.7 (20)	$71 / 2$	0.9	0.12	0.1	0.8	0.35	42 (33)	59.8 (49.5)	19.4 (22.7)	19.5 (22.8)	19.9 (23.2)
	$0.2{ }^{12,14}$	3.33 (4.0)	61/2	2.5	0.32	0.3	2.5	1.0	50 (40)	60 (50)	19.4 (22.7)	19.5 (22.8)	19.9 (23.2)
	0.2^{14}	3.33 (4.0)	61/2	3.5	1.7	0.7	3.5	1.5	120 (100)	295 (235)	7.6 (8.3)	6.2 (6.8)	6.4 (7.0)
	$0.06{ }^{15}$	1.0 (1.2)	51/2	12	3.0	1.5	8.0	3.5	205 (165)	935 (750)	1.40 (1.80)	1.50 (1.80)	1.60 (2.30)
	$0.006{ }^{15}$	0.100 (0.120)	41/2	55	15	7.0	70	35	218 (215)	6,200 (5,500)	0.55 (0.57)	0.65 (0.67)	0.75 (0.77)
	$0.0005{ }^{15}$	0.0083 (0.001)	$31 / 2$	325	95	95	900	410	270 (270)	14,600 (14,250)	0.50 (0.5)	0.60 (0.60)	0.70 (0.70)
$\begin{aligned} & 2 W \Omega \\ & (\leq 10 \mathrm{k} \Omega) \end{aligned}$				10-100 2	$1 \mathrm{k} \Omega$	10k Ω							
	5^{14}	83.3 (100)	$71 / 2$	2.0	0.5	0.4	-	-	9.5 (8)	12 (10)	87.0 (105)	86.1 (103)	86.5 (104)
	$1{ }^{14}$	16.7 (20)	$71 / 2$	3.5	0.8	0.6	-	-	42 (33)	59.8 (49.5)	21.0 (24.3)	19.5 (22.8)	19.9 (23.2)
	$0.2{ }^{12,14}$	3.33 (4.0)	61/2	6.5	1.7	1.5	-	-	50 (40)	60 (50)	21.0 (24.3)	19.5 (22.8)	19.9 (23.2)
	$0.2{ }^{14}$	3.33 (4.0)	$61 / 2$	8.0	4.5	5.5	-	-	120 (100)	295 (235)	7.6 (8.3)	6.2 (6.8)	6.4 (7.0)
	$0.06{ }^{15}$	1.0 (1.2)	$51 / 2$	15	6	6.5	-	-	205 (165)	935 (750)	1.40 (1.80)	1.50 (1.80)	1.60 (2.30)
	$0.006{ }^{15}$	0.100 (0.120)	41/2	60	15	15	-	-	218 (215)	6,200 (5,500)	0.55 (0.57)	0.65 (0.67)	0.75 (0.77)
	0.0005^{15}	0.0083 (0.001)	$31 / 2$	190	190	190	-	-	270 (270)	14,100 (13,700)	0.50 (0.5)	0.60 (0.60)	0.70 (0.70)
DCI				10ヶA	100رA	1 mA -100mA	1A	3A					
	5^{14}	83.3 (100)	$71 / 2$	3.5	1.6	1.6	2.9	2.0	9.5 (8)	12 (10)	88 (103)	86.1 (102.8)	86.3 (103.1)
	1^{14}	16.7 (20)	$61 / 2$	3.5	1.1	1.1	2.2	1.8	42 (33)	59.8 (49.5)	21.0 (22.7)	19.5 (22.8)	19.8 (23.1)
	$0.2{ }^{12,14}$	3.33 (4.0)	51/2	50	5.0	3.0	4.0	8.0	50 (40)	60 (50)	19.4 (22.7)	19.5 (22.8)	19.8 (23.1)
	$0.2{ }^{14}$	3.33 (4.0)	$41 / 2$	100	35	12	4.0	8.0	120 (100)	295 (235)	7.6 (8.3)	6.2 (6.8)	6.4 (7.0)
	$0.06{ }^{15}$	1.0 (1.2)	$41 / 2$	350	35	20	8.0	20	205 (165)	935 (750)	1.40 (1.80)	1.50 (1.80)	1.60 (2.30)
	$0.006{ }^{15}$	0.100 (0.120)	41/2	400	200	40	50	100	218 (215)	6,200 (5,500)	0.55 (0.57)	0.65 (0.67)	0.75 (0.77)
	0.0005^{15}	0.0083 (0.001)	$31 / 2$	2500	450	250	325	750	270 (270)	14,100 (13,700)	0.50 (0.5)	0.60 (0.60)	0.70 (0.70)
$4 \mathrm{~W} \Omega$				1Ω	10-100 Ω	1k Ω	10k Ω						
	5^{14}	83.3 (100)	$71 / 2$	5.5	0.8	0.5	0.5	-	5 (4)	5.9 (4.7)	173 (206)	173 (206)	173 (206)
	$1{ }^{14}$	16.7 (20)	71/2	15	1.4	0.5	0.7	-	23.5 (18.5)	29 (23)	39 (46)	39 (46)	39 (46)
	$0.2{ }^{12,14}$	3.33 (4.0)	51/2	100	30	10	50	-	26.5 (21)	30 (24)	39 (46)	39 (46)	39 (46)
	$0.2{ }^{14}$	3.33 (4.0)	51/2	300	50	10	63	-	80 (60)	120 (95)	12.3 (14.5)	11.3 (13.3)	11.7 (13.7)
	$0.06{ }^{15}$	1.0 (1.2)	41/2	500	50	15	70	-	140 (110)	285 (225)	6.2 (7.2)	6.3 (7.3)	6.5 (7.6)
	$0.006{ }^{15}$	0.100 (0.120)	$41 / 2$	750	75	30	100	-	200 (195)	580 (565)	4.2 (4.4)	4.3 (4.5)	4.6 (4.8)
	0.0005^{15}	0.0083 (0.001)	31/2	3500	450	250	250	-	210 (205)	650 (645)	4.2 (4.4)	4.3 (4.5)	4.6 (4.8)
$\begin{aligned} & \text { 4W } \Omega \\ & \text { OCOMP } \end{aligned}$				1Ω	10-100 ${ }^{\text {a }}$	1k Ω	10k Ω						
	5^{14}	83.3 (100)	$71 / 2$	5.5	0.8	0.5	0.5	-	2.5 (2.0)	2.9 (2.3)	343 (427)	341 (425)	342 (426)
	1^{14}	16.7 (20)	71/2	16	1.5	0.7	1.5	-	12.7 (10)	14 (11.2)	77 (95)	74 (92)	75 (93)
	$0.2{ }^{12,14}$	3.33 (4.0)	61/2	45	4.5	2.1	3.5	-	14 (11.2)	15 (12)	70 (86.5)	70 (86.5)	70 (86.5)
	$0.2{ }^{14}$	3.33 (4.0)	$51 / 2$	500	50	13	30	-	46.5 (37)	56 (44)	22.7 (25)	20.5 (23)	21.1 (24)
	0.0005^{15}	0.0083 (0.001)	$31 / 2$	4500	650	400	400	-	129 (125)	215 (210)	6.7 (6.7)	6.8 (6.8)	7 (7)
Dry-Ckt Ω OCOMP				1-10 2	100Ω	$1 \mathrm{k} \Omega$	2k Ω						
	5^{14}	83.3 (100)	61/2	8.0	10	10	8.0	-	2.5 (2.0)	2.9 (2.3)	347 (430)	345 (428)	346 (429)
	$1{ }^{14}$	16.7 (20)	51/2	17	22	25	28	-	12 (9.5)	13 (10)	80 (99)	77 (95)	78 (97)
	$0.2{ }^{12,14}$	3.33 (4.0)	41/2	50	50	50	50	-	14 (11.2)	15 (12)	70 (86.5)	70 (86.5)	70 (86.5)
	$0.2{ }^{14}$	3.33 (4.0)	$31 / 2$	500	1000	1000	1500	-	35 (30)	45 (36)	27 (33)	25 (31)	26 (32)
	0.0005^{15}	0.0083 (0.001)	21/2	8500	8500	8500	8500	-	84 (84)	115 (110)	10.7 (10.7)	10.7 (10.7)	11 (11)

RTD SPEEDS vs. NOISE 1 PLC and 5 PLC Noise are included in RTD Specifications.

Single Channel, $60 \mathrm{~Hz}(50 \mathrm{~Hz}$) Operation				Add ${ }^{\circ} \mathrm{C}$ to Reading ${ }^{16}$		Measurements into Buffer ${ }^{13}$ (rdg/s)		Measurement to PC ${ }^{13}$ ($\mathrm{ms} / \mathrm{rdg}$) Azero Off		
Function	NPLC	Aperture (ms)	Digits	4-Wire	3-Wire	Azero On	Azero Off	Ethernet	GPIB	USB
OCOMP OFF	5^{14}	83.3 (100)	$71 / 2$	0	0	5 (4)	5.9 (4.7)	173 (206)	173 (206)	173 (206)
	$1{ }^{14}$	16.7 (20)	71/2	0	0	23.5 (18.5)	29 (23)	39 (46)	39 (46)	39 (46)
	$0.2^{12,14}$	3.33 (4.0)	51/2	0.01	0.01	26.5 (21)	30 (24)	39 (46)	39 (46)	39 (46)
	$0.2{ }^{14}$	3.33 (4.0)	51/2	0.18	0.18	80 (60)	120 (95)	12.3 (14.5)	11.3 (13.3)	11.7 (13.7)
	$0.06{ }^{15}$	1.0 (1.2)	$41 / 2$	0.24	0.24	140 (110)	285 (225)	6.2 (7.2)	6.3 (7.3)	6.5 (7.6)
	0.006^{15}	0.100 (0.120)	41/2	0.37	0.37	200 (195)	580 (565)	4.2 (4.4)	4.3 (4.5)	4.6 (4.8)
	0.0005^{15}	0.0083 (0.001)	31/2	3.10	3.10	209 (205)	650 (645)	4.2 (4.4)	4.3 (4.5)	4.6 (4.8)
OCOMP ON	5^{14}	83.3 (100)	$71 / 2$	0	0	2.5 (2.0)	2.9 (2.3)	343 (427)	341 (425)	342 (426)
	1^{14}	16.7 (20)	$71 / 2$	0	0	12.7 (10)	14 (11.2)	77 (95)	74 (92)	75 (93)
	$0.2^{12,14}$	3.33 (4.0)	61/2	0.02	0.02	14 (11.2)	15 (12)	70 (86.5)	70 (86.5)	70 (86.5)
	$0.2{ }^{14}$	3.33 (4.0)	$51 / 2$	0.38	0.38	46.0 (37)	56 (44)	22.7 (25)	20.5 (23)	21.1 (24)
	0.0005^{15}	0.0083 (0.001)	$31 / 2$	4.67	4.67	128 (125)	215 (210)	6.7 (6.7)	6.8 (6.8)	7 (7)

SYSTEM PERFORMANCE 13, 14
312 -Digit Mode, Azero off, nPLC $=0.0005$. Time includes function change from either DCV or $2 \mathrm{~W} \Omega$ to listed function.

Function	Function Change (ms)	Range Change (ms)	Auto-range $(\mathbf{m s})$
DCV or $2 \mathrm{~W} \Omega(<\mathbf{1 0 k} \Omega)$	10	10	10
$4 \mathrm{~W} \Omega(<10 \mathrm{k} \Omega)$	20	20	20
DCI	10	10	10
Frequency or Period ${ }^{17}$	110	10	-
ACV or ACI ${ }^{17}$	20	85	300
Buffer Transfer Speed	Ethernet	GPIB	USB
Average for 1000 readings	$2450 / \mathrm{s}$	$2000 / \mathrm{s}$	$1800 / \mathbf{s}$
Average for 1000 readings with timestamp	$2300 / \mathrm{s}$	$1800 / \mathbf{s}$	$1600 / \mathbf{s}$

	Single Command Excecution Time (ms)			
Card	Command	Ethernet	GPIB	USB
$\mathbf{3 7 2 0}, \mathbf{3 7 2 1}$, $\mathbf{3 7 2 2}, \mathbf{3 7 3 0}$	channel.close (ch_list) or channel.open (ch_list)	5.7	5.8	6.1
$\mathbf{3 7 2 3}, \mathbf{3 7 2 4}$ $\mathbf{3 7 3 1}, \mathbf{3 7 3 2} \mathbf{1 8}$	channel.close (ch_list) or channel.open (ch_list)	2.3	2.4	2.7
	channel.close (ch_list 1-28) or channel.open (ch_list 1-28)	10.7	10.8	11.1
$\mathbf{3 7 4 0}$	channel.close (ch_list 29-32) or channel.open (ch_list 29-32)	22.7	22.8	23.1

DC MEASUREMENT CHARACTERISTICS

DC VOLTS

A-D LINEARITY: 1.0 ppm of reading +2.0 ppm of range.
INPUT IMPEDANCE: $100 \mathrm{mV}-10 \mathrm{~V}$ Ranges: Selectable $>10 \mathrm{G} \Omega / /<400 \mathrm{pF}$ or $10 \mathrm{M} \Omega \pm 1 \%$. 100V-300V Ranges: $10 \mathrm{M} \Omega \pm 1 \%$.
INPUT BIAS CURRENT: $<50 \mathrm{pA}$ at $23^{\circ} \mathrm{C}$ with dmm.autozero $=\mathrm{dmm}$. OFF or
dmm.inputdivider=dmm.ON.
COMMON MODE CURRENT: < 500 nA p-p for $\leq 1 \mathrm{MHz}$.
AUTOZERO OFF ERROR: For $\mathrm{DCV} \pm 1^{\circ} \mathrm{C}$ and ≤ 10 minutes, add $\pm(8 \mathrm{ppm}$ of reading $+5 \mu \mathrm{~V})$.
INPUT PROTECTION: 300V all ranges.
COMMON MODE VOLTAGE: 300 V DC or 300 Vrms (425 V peak for AC waveforms) between any terminal and chassis.

RESISTANCE

MAX. 4W Ω LEAD RESISTANCE: 5Ω per lead for 1Ω range; 10% of range per lead for $10 \Omega-1 \mathrm{k} \Omega$ ranges; $1 \mathrm{k} \Omega$ per lead for all other ranges.
MAX. $4 \mathrm{~W} \Omega$ LEAD RESISTANCE (DRY CKT): 0.5Ω per lead for 1Ω range; 10% of range per lead for $10 \Omega-100 \Omega$ ranges; 50Ω per lead for $1 \mathrm{k} \Omega-2 \mathrm{k} \Omega$ ranges
INPUT IMPEDANCE: $1 \Omega-10 \Omega$ Ranges: $99 \mathrm{k} \Omega \pm 1 \% / /<1 \mu \mathrm{~F}$ $100 \Omega-2 \mathbf{k} \Omega$ Ranges: $10 \mathrm{M} \Omega \pm 1 \% / /<0.015 \mu \mathrm{~F}$.
OFFSET COMPENSATION: Selectable on $4 \mathrm{~W} \Omega 1 \Omega-10 \mathrm{k} \Omega$ ranges
OPEN LEAD DETECTOR: Selectable per channel. $1.5 \mu \mathrm{~A}, \pm 20 \%$ sink current per DMM SHI and SLO lead. Default on.
CONTINUITY THRESHOLD: Adjustable 1 to 1000Ω.
AUTOZERO OFF ERROR: For $2 \mathrm{~W} \Omega \pm 1^{\circ} \mathrm{C}$ and ≤ 10 minutes, add $\pm(8 \mathrm{ppm}$ of reading $+0.5 \mathrm{~m} \Omega)$ for 10Ω and $5 \mathrm{~m} \Omega$ for all other ranges.
INPUT PROTECTION: 300 V all ranges.

DC MEASUREMENT CHARACTERISTICS (continued)

DC CURRENT

AUTOZERO OFF ERROR: For $\pm 1^{\circ} \mathrm{C}$ and ≤ 10 minutes, add \pm (8 ppm of reading + range error). Refer to table below.

Range	3 A	1 A	100 mA	10 mA	1 mA	$100 \mu A$	$10 \mu \mathrm{~A}$
Shunt Resistance guaranteed by design	0.05Ω	0.05Ω	1Ω	10Ω	100Ω	$1 \mathrm{k} \Omega$	$6 \mathrm{k} \Omega$
Burden Voltage	<1.75 V	$<0.55 \mathrm{~V}$	$<0.4 \mathrm{~V}$	$<150 \mathrm{mV}$	$<130 \mathrm{mV}$	$<105 \mathrm{mV}$	$<61 \mathrm{mV}$
Burden Voltage with 3721 card	<2.35 V	<1.15 V	$<0.4 \mathrm{~V}$	$<150 \mathrm{mV}$	$<130 \mathrm{mV}$	$<105 \mathrm{mV}$	$<61 \mathrm{mV}$
Autozero OFF "of range" Error	$100 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	$0.5 \mu \mathrm{~A}$	50 nA	5 nA	0.85 nA
For each additional amp after $\pm 1.5 \mathrm{~A}$ input, add the following to ppm of range:							
	-	120	60	60	60	60	95

INPUT PROTECTION: 3A, 250 V fuse

THERMOCOUPLES

CONVERSION: ITS-90.
REFERENCE JUNCTION: Internal, External, or Simulated (Fixed).
OPEN LEAD DETECTOR: Selectable per channel. Open $>1.15 \mathrm{k} \Omega \pm 50 \Omega$. Default on.
COMMON MODE ISOLATION: 300 V DC or 300 Vrms (425 V peak for AC waveforms), $>10 \mathrm{G} \Omega$ and $<350 \mathrm{pF}$ any terminal to chassis.

DC NOTES

1. 20% overrange on DC functions except 1% on 300 V range and 3.33% on 3 A range.
2. $\pm 5 \%$ (measured with $10 \mathrm{M} \Omega$ input resistance DMM, $>10 \mathrm{G} \Omega \mathrm{DMM}$ on $10 \mathrm{M} \Omega$ and $100 \mathrm{M} \Omega$ ranges). Refer to table for other $2 \mathrm{~W} / 4 \mathrm{~W}$ configurations. For Dry Circuit, $+20 \%,<1 \mathrm{mV}$ with dmm.offsetcompensation=ON for $100 \Omega-2 \mathrm{k} \Omega$ ranges.

Range	$\mathbf{2 W}$	$\mathbf{4 W}$	$\mathbf{4 W}$-Kelvin	Ocomp 4W	Ocomp 4W-Kelvin
$\mathbf{1 , 1 0 \Omega}$	8.2 V	8.2 V	8.2 V	12.1 V	12.1 V
$\mathbf{1 0 0} \mathbf{1} \mathbf{k} \Omega$	13.9 V	14.1 V	13.9 V	15.0 V	12.7 V
$\mathbf{1 0 k} \Omega$	9.1 V	9.1 V	9.1 V	0.0 V	0.0 V
$\mathbf{1 0 0 k}, \mathbf{1} \mathbf{M} \Omega$	12.7 V	$\mathbf{1 4 . 7 \mathrm { V }}$	12.7 V	-	-
$\mathbf{1 0 M}, \mathbf{1 0 0} \Omega$	6.4 V	6.4 V	6.4 V	-	-

3. Relative to calibration accuracy
4. Add the following additional uncertainty with -ST accessory:

	\pm (ppm of range)			\pm (ppm of reading + ppm of range)			
Card	100 mV	1 V	10V	$100 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$	$10 \mathrm{M} \Omega$	$100 \mathrm{M} \Omega$
3720, 3721, 3722, and 3730	45	4.5	-	$8+5$	$8+0.5$	-	-
3723	60	6.0	-	$8+6$	$8+0.5$	-	-
3724	45	4.5	-	$8+5$	$80+0.5$	$250+1$	$5000+1$
3731	800	80	8	$8+80$	$40+8$	$0+25$	$0+15$
3732 (Quad 4×28)	200	20	2	$8+20$	$40+2$	$0+7$	$0+4$

5. Specifications are for 4 -wire $\Omega, 1 \Omega-1 \mathrm{k} \Omega$ with offset compensation on. For Series 3700 A plug-in cards, $\mathrm{L}_{\text {sysc }}$ and offset compensation on. 1Ω range is 4 -wire only. Model 3724 card: $1 \mathrm{k} \Omega-100 \mathrm{M} \Omega$ ranges only. Model 3731 card: $100 \Omega-100 \mathrm{M} \Omega$ ranges only.
For 2-wire Ω specifications, add the following to "ppm of range" uncertainty:

| | Rear Panel Connector | |
| :--- | :---: | :---: | :---: | :---: |
| DMM Connect Relays | Rel Enable | or $\mathbf{3 7 0 0}$ Card |$\quad \mathbf{3 7 2 4}$ Card $\mathbf{3 7 3 1}$ Card

6. Test current with dmm.offsetcompensation=OFF, $\pm 5 \%$.
7. Add the following to "ppm of reading" uncertainty when using Series 3700A Plug-in Cards in Operating Environment $\geq 50 \% \mathrm{RH}$

Card	$\mathbf{1 0 k} \Omega$	$\mathbf{1 0 0} \mathbf{k} \Omega$	$\mathbf{1 M} \Omega$	$\mathbf{1 0 M} \Omega$	$\mathbf{1 0 0} \mathbf{M} \Omega$
3720, 3721, 3724, 3730, 3731, 3732 (Quad 4×28) with MTC D-Shell connector	1 ppm	10 ppm	0.01%	0.1%	1%
3720, 3721, 3724, 3730, 3731, 3732 (Quad 4×28) with -ST screw terminal module	10 ppm	100 ppm	0.1%	1%	10%
$\mathbf{3 7 2 2}$ and 3723	10 ppm	100 ppm	0.1%	1%	10%

Series 3700A Plug-in Cards Operating Environment: Specified for 0° to $50^{\circ} \mathrm{C}, \leq 70 \% \mathrm{RH}$ at $35^{\circ} \mathrm{C}$.
8. Dry-Ckt Ω is 4 -wire only. Specifications with offset compensation and $\mathrm{L}_{\text {SYNC }}$ on

Card	Ranges
3720, 3721, and 3730	$1 \Omega-2 \mathrm{k} \Omega$
$\mathbf{3 7 2 2 , 3 7 2 3}$, and 3732	$10 \Omega-2 \mathrm{k} \Omega$
3724	$1 \mathrm{k} \Omega-2 \mathrm{k} \Omega$
$\mathbf{3 7 3 1}$	$100 \Omega-2 \mathrm{k} \Omega$

Series 3700A

System Switch/Multimeter and Plug-In Cards

DC NOTES (continued)

9. Includes Analog Backplane 15 -pin rear panel connector. For 3721, refer to DC Current table for additional uncertainties.
10. For $\mathrm{L}_{\mathrm{SYNC}}$ On, line frequency $\pm 0.1 \%$.

	nPLC	$\mathbf{5}$	$\mathbf{1}$	$<\mathbf{0 . 2}$	$<\mathbf{0 . 0 1}$
$\mathbf{L}_{\text {SYNC }}$ On	NMRR	110 dB	90 dB	45 dB	-
$\mathbf{L}_{\text {SYNC }}$ Off	NMRR	$60 \mathrm{~dB}, \pm 2 \mathrm{~dB}$	$60 \mathrm{~dB}, \pm 2 \mathrm{~dB}$	-	-

11. For $1 \mathrm{k} \Omega$ unbalance in LO lead. AC CMRR is 70 dB .

nPLC	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{0 . 2}{ }^{\mathbf{1 2}}$	$\leq \mathbf{0 . 2}$
CMRR	140 dB	140 dB	120 dB	80 dB

12. For $\mathrm{L}_{\mathrm{SyNC}}$ On.
13. Reading rates are for $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ operation using factory defaults operating conditions dmm.reset("all"), Autorange off, dmm.autodelay $=\mathrm{dmm}$.OFF, dmm .opendetector $=\mathrm{dmm}$.OFF, format.data. $=$ format.SREAL. Ranges as follows: $\mathrm{DCV}=10 \mathrm{~V}, 2 \mathrm{~W} \Omega / 4 \mathrm{~W} \Omega=1 \mathrm{k} \Omega, \mathrm{DCI}=1 \mathrm{~mA}, \operatorname{Dry}-\mathrm{Ckt} \Omega=10 \Omega, \mathrm{ACI}=1 \mathrm{~mA}$, and $\mathrm{ACV}=1 \mathrm{~V}$.

For Dry-Ckt Ω with Offset Comp OFF $2 \mathrm{k} \Omega, 60 \mathrm{rdg} / \mathrm{s}$ max. Dry-Ckt Ω with Offset Comp ON $2 \mathrm{k} \Omega, 29.5 \mathrm{rdg} / \mathrm{s}$ max. For temperature reading rates use DCV for T/C and $2 \mathrm{~W} \Omega$ for Thermistor. Speeds are typical and include measurements and data transfer out the Ethernet, GPIB, or USB.
14. DMM configured for single reading, dmm.measurecount $=1$, and print(dmm.measure()). May require additional settling delays for full accuracy, depending on measurement configuration.
15. DMM configured for multisample readings and single buffer transfer, dmm.measurecount $=1000$ buf=dmm.makebuffer(1000), dmm.measure(buf), and printbuffer(1,1000,buf).
16. dmm.autozero $=\mathrm{dmm}$.ON. RMS noise using low thermal short for $\mathrm{DCV}, 2 \mathrm{~W} \Omega, 4 \mathrm{~W} \Omega$, and Dry-Ckt Ω. For DCI , dmm.connect=dmm.CONNECT_NONE or 0. For RTD, noise using low thermal 190Ω precision resistor. Includes Model 3721 card accuracies. RMS noise values are typical.
17. For DCV or $2 \mathrm{~W} \Omega$ to Frequency or Period, dmm.nplc $=0.2$ and dmm.aperture $=0.01 \mathrm{sec}$. For ACI or ACV dmm.detectorbandwidth=300. For ACI or ACV with dmm.autodelay=dmm.ON, best speed is 65 ms .
18. Speeds are within same multiplexer bank. Add an additional 8 ms when changing banks or slots.
19. When properly zeroed using REL function.

AC Specifications

Function	Range ${ }^{1}$	Resolution	Calibration Cycle	Accuracy: \pm (\% of reading $+\%$ of range) $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$					
				$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	10 Hz -20 kHz	20 kHz-50 kHz	50 kHz-100 kHz	100 kHz-300 kHz
Voltage ${ }^{2}$	$\begin{aligned} & 100.0000 \mathrm{mV} \\ & 1.000000 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.1 \mu \mathrm{~V} \\ & 1 \quad \mu \mathrm{~V} \end{aligned}$	$\begin{gathered} 90 \text { Day } \\ (100 \mathrm{mV}-100 \mathrm{~V}) \end{gathered}$	$1.0+0.03$	$0.30+0.03$	$0.05+0.03$	$0.11+0.05$	$0.6+0.08$	$4.0+0.5$
	$\begin{array}{ll} 10.00000 & \mathrm{~V} \\ 100.0000 & \mathrm{~V} \end{array}$	$\begin{aligned} 10 & \mu \mathrm{~V} \\ 100 & \mu \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \text { Year } \\ (100 \mathrm{mV}-100 \mathrm{~V}) \end{gathered}$	$1.0+0.03$	$0.30+0.03$	$0.06+0.03$	$0.12+0.05$	$0.6+0.08$	$4.0+0.5$
	300.0000 V	1 mV	90 Day	$1.0+0.05$	$0.30+0.05$	$0.05+0.05$	$0.11+0.08$	$0.6+0.11$	$4.0+0.8$
	300.0000 V	1 mV	1 Year	$1.0+0.05$	$0.30+0.05$	$0.06+0.05$	$0.12+0.08$	$0.6+0.11$	$4.0+0.8$
			Temp. Coeff. $/{ }^{\circ} \mathbf{C}^{3}$ (all ranges)	$0.010+0.003$	$0.030+0.003$	$0.005+0.003$	$0.006+0.005$	$0.01+0.006$	$0.03+0.01$
Current ${ }^{2}$				$3 \mathrm{Hz-5} \mathrm{~Hz}$	$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	$\mathbf{1 0 H z - 2 ~ k H z ~}$	$2 \mathbf{k H z - 5} \mathbf{~ k H z}$	$5 \mathbf{k H z} \mathbf{- 1 0} \mathbf{~ k H z}$	
	$1.000000 \mathrm{~mA}^{7}$	1 nA	90 Day/1 Year	$1.0+0.04$	$0.30+0.04$	$0.08+0.03$	$0.09+0.03$	$0.09+0.03$	
	10.00000 mA	10 nA		$1.0+0.04$	$0.30+0.04$	$0.08+0.03$	$0.09+0.03$	$0.09+0.03$	
	100.0000 mA	100 nA		$1.0+0.04$	$0.30+0.04$	$0.08+0.03$	$0.09+0.03$	$0.09+0.03$	
	1.000000 A	$1 \mu \mathrm{~A}$		$1.0+0.04$	$0.30+0.04$	$0.20+0.04$	$0.88+0.04$	$2.0+0.04$	
	3.000000 A	$10 \mu \mathrm{~A}$		$1.0+0.05$	$0.30+0.05$	$0.20+0.05$	$0.88+0.05$	$2.0+0.05$	
			Temp. Coeff. $/{ }^{\circ} \mathbf{C}^{3}$ (all ranges)	$0.10+0.004$	$0.030+0.004$	$0.005+0.003$	$0.006+0.005$	$0.006+0.005$	

ADDITIONAL UNCERTAINTY \pm (\% of reading)

Low Frequency Uncertainty	Detector Bandwidth			Additional Uncertainty \pm (\% of reading)	Detector Bandwidth	Crest Factor ${ }^{5}$Maximum Crest Factor: 5 at full-scale			
	3 (3 Hz-300 kHz)	30 (30 Hz-300 kHz)	300 (300 Hz-300 kHz)			1-2	2-3	3-4	4-5
$20 \mathrm{~Hz}-30 \mathrm{~Hz}$	0	0.3	-	$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	3	0.50	1.20	1.30	1.40
$30 \mathrm{~Hz}-50 \mathrm{~Hz}$	0	0	-	$10 \mathrm{~Hz}-30 \mathrm{~Hz}$	3	0.20	0.30	0.60	0.90
$50 \mathrm{~Hz}-100 \mathrm{~Hz}$	0	0	4.0	$30 \mathrm{~Hz}-100 \mathrm{~Hz}$	3 or 30	0.20	0.30	0.60	0.90
$100 \mathrm{~Hz}-200 \mathrm{~Hz}$	0	0	0.72	$\xrightarrow{>100 \mathrm{~Hz}}$		0.05	0.15		
$200 \mathrm{~Hz}-300 \mathrm{~Hz}$	0	0	0.18	$>100 \mathrm{~Hz}$	3 or 30	0.05	0.15	0.30	0.40
$300 \mathrm{~Hz}-500 \mathrm{~Hz}$	0	0	0.07	$300 \mathrm{~Hz}-500 \mathrm{~Hz}$	300 only	0.50	1.20	1.30	1.40
$>500 \mathrm{~Hz}$	0	0	0	$\geq 500 \mathrm{~Hz}$	300 only	0.05	0.15	0.30	0.40

Series 3700A

System Switch/Multimeter and Plug-In Cards

AC SPEEDS Single Channel, $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ Operation

Function	Detector Bandwidth	NPLC	Aperture (ms)	Measurements into Buffer ${ }^{9}$ (rdg/s)			Measurement to PC^{9} ($\mathrm{ms} / \mathrm{rdg}$)		
				Digits	Azero On	Azero Off	Ethernet	GPIB	USB
ACI / ACV	3	N/A	N/A	$61 / 2$	0.45 (0.45)	N/A	2150 (2150)	2150 (2150)	2150 (2150)
	30	N/A	N/A	$61 / 2$	2.5 (2.5)	N/A	400 (400)	400 (400)	400 (400)
	300	$1.0{ }^{10}$	16.67 (20)	61/2	42 (33)	59.5 (50)	19.4 (22.7)	19.5 (22.8)	19.8 (23.1)
	300	$0.2{ }^{10}$	3.33 (4.0)	61/2	120 (100)	295 (235)	7.6 (8.3)	6.2 (6.8)	6.4 (7.0)
	300	$0.06{ }^{11}$	1.0 (1.2)	$51 / 2$	170 (165)	935 (750)	1.40 (1.80)	1.50 (1.80)	1.60 (2.30)
	300	0.006^{11}	0.100 (0.120)	$4^{1 / 2}$	218 (215)	6,200 (5,500)	0.55 (0.57)	0.65 (0.67)	0.75 (0.77)
	300	0.0005^{11}	0.0083 (0.001)	$31 / 2$	218 (215)	14,600 (14,250)	0.50 (0.5)	0.60 (0.60)	0.70 (0.70)
Frequency/Period	N/A	N/A	10-273	N/A	$\begin{gathered} 2 \times \text { input period } \\ + \text { gate time } \\ \hline \end{gathered}$	N/A	$2 \times$ input period + gate time +2.7 ms	$2 \times$ input period + gate time +2.8 ms	$\begin{aligned} & 2 \times \text { input period }+ \\ & \text { gate time }+3.1 \mathrm{~ms} \end{aligned}$

AC MEASUREMENT CHARACTERISTICS

AC VOLTS

MEASUREMENT METHOD: AC-coupled, True RMS.
INPUT IMPEDANCE: $1 \mathrm{M} \Omega \pm 2 \% / /$ by $<150 \mathrm{pF}$.
INPUT PROTECTION: 300 VDC or 300 Vrms rear inputs or 37 xx cards.

AC CURRENT

MEASUREMENT METHOD: AC-coupled, True RMS.

Range	$\mathbf{3 ~ A}$	$\mathbf{1 A}$	$\mathbf{1 0 0} \mathbf{~ m A}$	$\mathbf{1 0} \mathbf{~ m A}$	$\mathbf{1 m A}$
Shunt Resistance guaranteed by design	0.05Ω	0.05Ω	1.0Ω	10Ω	100Ω
Burden Voltage Rear Panel	$<1.75 \mathrm{~V} \mathrm{rms}$	$<0.55 \mathrm{~V} \mathrm{rms}$	$<0.4 \mathrm{~V} \mathrm{rms}$	$<150 \mathrm{mV} \mathrm{rms}$	$<125 \mathrm{mV} \mathrm{rms}$
Burden Voltage 3721 Card	$<2.4 \mathrm{~V} \mathrm{rms}$	$<1.0 \mathrm{~V} \mathrm{rms}$	$<0.6 \mathrm{~V} \mathrm{rms}$	$<200 \mathrm{mV} \mathrm{rms}<130 \mathrm{mV} \mathrm{rms}$	
INPUT PROTECTION: $3 \mathrm{~A}, 250 \mathrm{~V}$ fuse.					

FREQUENCY AND PERIOD

MEASUREMENT METHOD: Reciprocal Counting technique.
GATE TIME: dmm.aperture $=0.273 \rightarrow 0.01$. Default 0.01 s .

AC GENERAL

AC CMRR ${ }^{6}$: 70dB.
VOLT•HERTZ PRODUCT: $\leq 8 \times 10^{7}$ Volt $\cdot \mathrm{Hz}$ (guaranteed by design), $\leq 2.1 \times 10^{7}$ Volt Hz verified. Input frequency verified for $\leq 3 \times 10^{5} \mathrm{~Hz}$.

AC NOTES

1. 20% overrange on AC functions except 1% on 300 V and 3.33% on 3 A . Default resolution is $51 / 2$ digits, maximum useable resolution is $61 / 2$ with $7^{1 / 2}$ digits programmable.
2. Specification are for Detector Bandwidth 3 and sinewave inputs $>5 \%$ of range. Detector Bandwidth 3 and 30 are multi-sample A/D conversions. Detector bandwidth 300 is a single A / D conversion, programmable from 0.0005 PLC to 15PLC. Default condition set to 1 PLC.
3. Applies to $0^{\circ}-18^{\circ} \mathrm{C}$ and $28^{\circ}-50^{\circ} \mathrm{C}$
4. Specified for square wave inputs. Input signal must be $>10 \%$ of ACV range. If input is $<20 \mathrm{mV}$ on the 100 mV range then the frequency must be $>10 \mathrm{~Hz}$. For sinewave inputs, frequency must be $>100 \mathrm{~Hz}$.
5. Applies to non-sinewave inputs $5 \mathrm{~Hz}->10 \mathrm{kHz}$, and DC content $\leq 3 \%$ of range.
6. For $1 \mathrm{k} \Omega$ unbalance in LO lead.
7. For Model $3721,1 \mathrm{~mA} \mathrm{ACI}$, add 0.05% to "of reading" uncertainty from $250 \mathrm{~Hz} \rightarrow 10 \mathrm{kHz}$.
8. Shunt resistance guaranteed by design.
9. Reading rates are for $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ operation using factory defaults operating conditions dmm.reset("all"), Autorange off, dmm.autodelay=dmm.OFF, dmm.opendetector $=\mathrm{dmm}$.OFF, format.data. $=$ format.SREAL. Ranges Autorange off, dmm.autodelay=dmm.OFF, dmm.opendetector $=\mathrm{dmm}$. OFF, format.data. $=$ format.SELAL. Ranges
as follows: $\mathrm{DCV}=10 \mathrm{~V}, 2 \mathrm{~W} \Omega / 4 \mathrm{~W} \Omega=1 \mathrm{k} \Omega, \mathrm{DCI}=1 \mathrm{~mA}, \mathrm{Dry}$-Ckt $\Omega=10 \Omega, \mathrm{ACI}=1 \mathrm{~mA}$, and $\mathrm{ACV}=1 \mathrm{~V}$. For DryCkt Ω with Offset Comp OFF $2 \mathrm{k} \Omega, 60 \mathrm{rdg} / \mathrm{s}$ max. Dry-Ckt Ω with Offset Comp ON $2 \mathrm{k} \Omega, 29.5 \mathrm{rdg} / \mathrm{s}$ max. For temperature reading rates use DCV for T / C and $2 \mathrm{~W} \Omega$ for Thermistor. Speeds are typical and include measuretemperature reading rates use DCV for T/C and $2 \mathrm{~W} \Omega$ for
ments and data transfer out the Ethernet, GPIB, or USB.
10. DMM configured for single reading, dmm.measurecount $=1$, and print(dmm.measure()). May require additional settling delays for full accuracy, depending on measurement configuration.
11. DMM configured for multisample readings and single buffer transfer, dmm.measurecount $=1000$ buf=dmm.makebuffer(1000), dmm.measure(buf), and printbuffer(1,1000,buf).

Series 3700A

System Switch/Multimeter and Plug-In Cards

GENERAL

EXPANSION SLOTS: 6.

POWER LINE: Universal, 100 V to 240 V .
LINE FREQUENCY: 50 Hz and 60 Hz , automatically sensed at power-up. POWER CONSUMPTION: 28VA with DMM and display, up to 140VA with six 37 xx cards. REAL TIME CLOCK: Battery backed, 10 years typical life. EMC: Conforms to European Union EMC Directive. SAFETY: Conforms to European Union Low Voltage Directive.
VIBRATION: MIL-PRF-28800F Class 3, Random.
WARM-UP: 2 hours to rated accuracy.
DIGITAL I/O: 25 -pin female D-shell.

	1/0 1-9	1/0 10-14	Vext
$\mathrm{I}_{\text {SINK }}$, max.	5 mA	250 mA	-
Absolute $\mathrm{V}_{\text {IN }}$	5.25 V to -0.25 V	5.25 V to -0.25 V	5 V to 33 V
$\mathrm{V}_{\text {IH }} \mathrm{min}$	2.2 V	2.2 V	-
$\mathrm{V}_{\text {II }}$ max	0.7 V	0.7 V	-
$\mathrm{V}_{\text {OL }}$ max at $5 \mathrm{~mA} \mathrm{I}_{\text {sink }}$	0.7 V	0.7 V	-
$\mathrm{V}_{\text {OL }}$ max at $\mathrm{I}_{\text {sink }}$ max	-	2.3 V	-
$\mathrm{V}_{\mathrm{OH}} \mathrm{min}, 0.4 \mathrm{~mA}$ source	2.7 V	2.4 V	-
Min $\mathrm{V}_{\text {IV }}$ pulse	$2 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	-
Min V_{0} pulse	$1 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$	-

1/0 1-9

1/0 10-14

TRIGGERING AND MEMORY:
Window Filter Sensitivity: $0.01 \%, 0.1 \%, 1 \%, 10 \%$, or full-scale of range (none).
Trigger Delay: 0 to 99 hrs. ($10 \mu \mathrm{~s}$ step size).
External Trigger Delay: $<10 \mu \mathrm{~s}$.
Memory: Up to 650,000 time-stamped readings with Web page disabled. Additional memory available with external "thumb drive."
Non-volatile Memory: Single user save setup, with up to 75 DMM configurations and ≥ 600 channel patterns (dependent on name length, DMM function and configuration, and pattern image size). Additional memory available with external "thumb drive."
MATH FUNCTIONS: Rel, dB, Limit Test, $\%, 1 / \mathbf{x}$, and $\mathrm{mX}+\mathrm{b}$ with user defined displayed. REMOTE INTERFACE:

Ethernet: RJ-45 connector, LXI Class B Version 2, 10/100BT, no auto MDIX.
GPIB: IEEE-488.1 compliant. Supports IEEE-488.2 common commands and status model topology.
USB Device (rear panel, type B): Full speed, USBTMC compliant.
USB Host (front panel, type A): USB 2.0, support for thumb drives.
LXI COMPLIANCE: LXI Class B Version 2 with IEEE 1588 precision time protocol. LXI TIMING (applies to scanning) and SPECIFICATION:
Receive LAN[0-7] Event Delay: n / s (not specified) min., $800 \mu \mathrm{~s}$ typ., n / s max.
Alarm to Trigger Delay: $25 \mu \mathrm{~s}$ min., $50 \mu \mathrm{~s}$ typ., n / s max.
Generate LAN[0-7] Event: n / s min., $800 \mu \mathrm{~s}$ typ., n / s max. (minimums are probabilistic and represent a 95% confidence factor).
Clock Accuracy: 25 ppm .
Synchronization Accuracy: <150ns (probabilistic and represents a 95% confidence factor).
Timestamp Accuracy: $100 \mu \mathrm{~s}$.
Timestamp Resolution: 20ns.
LANGUAGE: Embedded Test Script Processor (TSP) accessible from any host interface. Responds to individual Instrument Control Library (ICL) commands. Responds to high-speed test scripts comprised of ICL commands and Test Script Language (TSL) statements (e.g.,
branching, looping, math, etc.). Able to execute high-speed test scripts stored in memory
without host intervention.
IP CONFIGURATION: Static or DHCP.
PASSWORD PROTECTION: 11 characters
MINIMUM PC HARDWARE: Intel Pentium 3, $800 \mathrm{MHz}, 512 \mathrm{Mbyte}$ RAM, 210 Mbyte disk space or better.
OPERATING SYSTEMS/SOFTWARE: Windows ${ }^{\circledR} 2000$ and XP compatible, supports Web browsers with Java plug-in (requires Java plug-in 1.6 or higher). Web pages served by 3706 A .
OPERATING ENVIRONMENT: Specified for 0° to $50^{\circ} \mathrm{C}, \leq 80 \% \mathrm{RH}$ at $35^{\circ} \mathrm{C}$, altitude up to 2000 meters.
STORAGE ENVIRONMENT: -40° to $70^{\circ} \mathrm{C}$.
DIMENSIONS:
Rack Mounted: 89 mm high $\times 483 \mathrm{~mm}$ wide $\times 457 \mathrm{~mm}$ deep ($3.5 \mathrm{in} . \times 19 \mathrm{in} . \times 18 \mathrm{in}$.).
Bench Configuration (includes handle and feet): 104 mm high $\times 483 \mathrm{~mm}$ wide $\times 457 \mathrm{~mm}$ deep ($4.125 \mathrm{in} . \times 19 \mathrm{in} . \times 18 \mathrm{in}$.)
SHIPPING WEIGHT: 13 kg (28 lbs).

