System Switch/Multimeter and Plug-In Cards

- Six-slot system switch mainframe with optional high performance multimeter
- Multi-processor architecture optimized for high throughput scanning and pattern switching applications
- Remote PC control via Ethernet, USB, and GPIB interfaces
- Up to 576 two-wire or 720 onewire multiplexer channels in one mainframe
- Up to 2,688 one-pole matrix crosspoints in one mainframe
- Embedded Test Script Processor (TSP*) offering unparalleled system automation, throughput, and flexibility
- master/ slave connection provides easy system expansion and seamless connection to Series 2600 and 2600B

8

- Capable of over 14,000 readings per second to memory with optional high performance multimeter
- LXI interface with embedded Web browser interface for test setup, maintenance, and basic application control

The Series 3700A offers scalable, instrument grade switching and multi-channel measurement solutions that are optimized for automated testing of electronic products and components. The Series 3700A includes four versions of the Model 3706A system switch mainframe along with a growing family of plug-in switch and control cards. When the Model 3706A mainframe is ordered with the high performance multimeter, you receive a tightly integrated switch and measurement system that can meet the demanding application requirements in a functional test system or provide the flexibility needed in stand-alone data acquisition and measurement applications.

Maximizes System Control and Flexibility

To provide users with greater versatility when designing test systems, the Series 3700A mainframes are equipped with many standard features. For example, easy connectivity is supported with three remote interfaces: LXI/Ethernet, General Purpose Interface Bus (GPIB), and Universal Serial Bus (USB). Fourteen digital I/O lines are also included, which are programmable

and can be used to control external devices such as component handlers or other instruments. Additionally, system control can be greatly enhanced by using our Test Script Processor (TSP) technology. This technology provides "smart" instruments with the ability to perform distributed processing and control at the instrument level versus a central PC.

High Quality Switching at a Value Price

The Series 3700A builds upon Keithley's tradition of producing innovative, high quality, precise signal switching. This series offers a growing family of high density and general purpose plug-in cards that accommodates a broad range of signals at very competitive pricing. The Series 3700A supports applications as diverse as design validation, accelerated stress testing, data acquisition, and functional testing.

Model 3706A Mainframe

The Series 3700A includes the base Model 3706A system switch/multimeter mainframe with three options for added flexibility. This mainframe contains six slots for plug-in cards in a compact 2U high (3.5 inches/89mm) enclosure that easily accommodates the needs of medium to high channel count applications. When fully loaded, a mainframe can support up to 576 two-wire multiplexer channels or 2,688 one-pole matrix crosspoints for unrivaled density and economical per channel costs.

High Performance, 71/2-digit Multimeter (DMM)

The high performance multimeter option provides up to 7½-digit measurements, offering 26-bit resolution to support your ever-increasing test accuracy requirements. This flexible resolution supplies a DC reading rate from >14,000 readings/second at 3½ digits to 60 readings/second at 7½ digits

to accommodate a greater span of applications. The multimeter does not use a card slot, so you maintain all six slots in your mainframe. In addition, the multimeter is wired to the mainframe's analog backplane, ensuring a high quality signal path from each card channel to the multimeter.

The multimeter supports 13 built-in measurement functions, including: DCV, ACV, DCI,

Single Channel Reading Rates

NPLC	DCV/ 2 Wire Ohms	4 Wire Ohms
1.0	60	29
0.2	295	120
0.06	935	285
0.006	6,200	580
0.0005	14,100	650

ACI, frequency, period, two-wire ohms, four-wire ohms, three-wire RTD temperature, four-wire RTD temperature, thermocouple temperature, thermistor temperature, and continuity. In addition, the multimeter offers extended low ohms (1Ω) and low current (10μ A) ranges. In-rack calibration is supported, which reduces both maintenance and calibration time.

Distributed By:
Signal Test, Inc
1529 Santiago Ridge Way
San Diego, CA 92154
Tel. 1-619-575-1577 USA
www.SignalTestInc.com
Sales@SignalTestInc.com

Ordering Information

Mainframes

3706A Six-slot

Six-slot system switch with high performance DMM

3706A-NFP

Six-slot system switch with high performance DMM, without front panel display and keypad

3706A-S Six-slot system switch

3706A-SNFP

Six-slot system switch, without front panel display and keypad

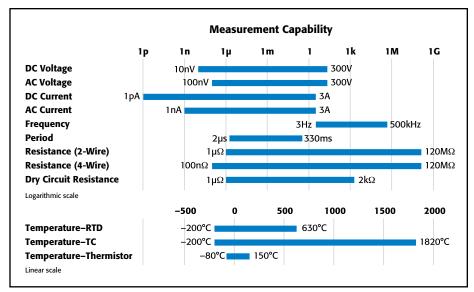
Plug-in Cards

3720 Dual 1×30 multiplexer card (auto CJC when used with 3720-ST) 3721 Dual 1×20 multiplexer card (auto CJC when used with 3721-ST) 3722 Dual 1×48, high density, multiplexer card 3723 Dual 1×30, high speed, reed relay multiplexer card 3724 Dual 1×30 FET multiplexer card 3730 6×16, high density, matrix card 3731 6×16 high speed, reed relay matrix card Quad 4×28, ultra-3732 high density, reed relay matrix card 3740 32 channel isolated switch card

Multifunction

4288-10

Fixed Rear Rack Mount Kit


control card

Accessories Supplied

3750

Test Script Builder Software Suite CD Ethernet Crossover Cable (CA-180-3A) Series 3700A Product CD (includes LabVIEW*, IVI C, and IVI.COM drivers)

System Switch/Multimeter and Plug-In Cards

Measurement capabilities of the high performance multimeter

ACCESSORIES AVAILABLE

GPIB INTER	FACES AND CABLES	SERVICES AVAILABLE			
7007-1	Shielded GPIB Cable, 1m (3.5ft)	Mainframe Mode	ls 3706A and 3706A-NFP		
7007-2	Shielded GPIB Cable, 2m (6.6ft)	3706A-3Y-EW	1 Year Factory Warranty Extended to 3 Years		
KPCI-488LPA	IEEE-488 Interface/Controller for the PCI Bus	3706A-5Y-EW	1 Year Factory Warranty Extended to 5 Years		
KUSB-488B	IEEE-488 USB-to-GPIB Interface Adapter	C/3706A-3Y-STD	Calibration Contract, 3 Years, Standard Calibration*		
DIGITAL I/O, TRIGGER LINK, AND TSP-LINK		C/3706A-3Y-DATA	Calibration Contract, 3 Years, Z540 Compliant Calibration with Data*		
2600-TLINK	Trigger I/O to Trigger Link Interface Cable, 1m (3.3 ft)	C/3706A-3Y-ISO	Calibration Contract, 3 Years, ISO 17025 Accredited Calibration*		
CA-126-1	Digital I/O and Trigger Cable, 1.5m (4.9 ft)	C/3706A-5Y-STD	Calibration Contract, 5 Years, Standard		
CA-180-3A	CAT5 Crossover Cable for TSP-Link		Calibration*		
	R CONNECTORS	C/3706A-5Y-DATA	Calibration Contract, 5 Years, Z540 Compliant Calibration with Data*		
3706-BAN	DMM Adapter Cable, 15-pin D-sub to banana jacks, 1.4m (4.6 ft)	C/3706A-5Y-ISO	Calibration Contract, 5 Years, ISO 17025 Accredited Calibration*		
3706-BKPL	Analog Backplane Extender Board, 15-pin	Mainframe Mode	ls 3706A-S and 3706A-SNFP		
	D-sub to terminal block	3706A-S-3Y-EW	1 Year Factory Warranty Extended to 3 Years		
3706-TLK	Test Lead Kit, includes 3706-BAN and plug-in test lead accessories	3706A-S-5Y-EW	1 Year Factory Warranty Extended to 5 Years		
-/		SOFTWARE SE	RVICES		
8620	Shorting Plug	SYSTEM DEVEL	OPMENT OR IMPLEMENTATION		
RACK MOUN	NT KIT	Other service cont	racts are available; please contact us for details.		

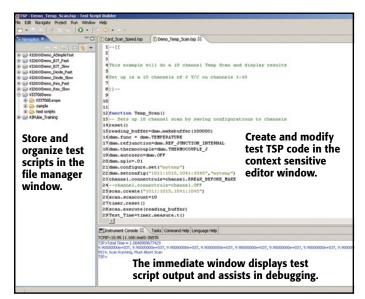
*Not available in all countries.

System Switch/Multimeter and Plug-In Cards

TSP Distributed Control Increases Test Speed and Lowers Test Cost

TSP technology enhances instrument control by allowing users the choice of using standard PC control or of creating embedded test scripts that are executed on microprocessors within the instrument. By using TSP test scripts instead of a PC for instrument control, you avoid communication delays between the PC controller and instrument, which results in improved test throughput. Test scripts can contain math and decision-making rules that further reduce the interaction between a host PC and the instrument.

This form of distributed control supports the autonomous operation of individual instruments or groups of instruments and can possibly remove the need for a high level PC controller, which lowers test and ownership costs. This is the same proven TSP technology found in our innovative Series 2600B System SourceMeter® SMU instruments.


TSP-Link Technology for Easy and Seamless System Coordination and Expansion

If your channel density requirements grow or if you need to process more signal types, use TSP-Link Technology to expand your system. The TSP-Link master/slave connection offers easy system expansion between Series 3700A mainframes. You can also use TSP-Link Technology to connect to other TSP-Link enabled instruments such as Series 2600B SourceMeter SMU instruments. Everything connected with TSP-Link can be controlled by the master unit, just as if they were all housed in the same chassis.

This high speed system expansion interface lets users avoid the complex and time consuming task of expanding their remote interfaces to another mainframe. There is no need to add external triggers and remote communication cables to individual instruments, since all TSP-Link connected devices can be controlled from a single master unit.

Test Script Builder Software Suite

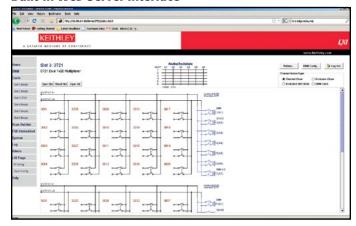
Test Script Builder is a software tool that is provided with all Series 3700A instruments to help users easily create, modify, debug, and store TSP test scripts. It supplies a project/file manager window to store and organize test scripts, a text-sensitive program editor to create and modify test TSP code, and an immediate instrument control window to send Ethernet, GPIB, and USB commands and to receive data from the instrument. The immediate window also allows users to see the output of a given test script and simplifies debugging.

Test Script Builder Software Suite

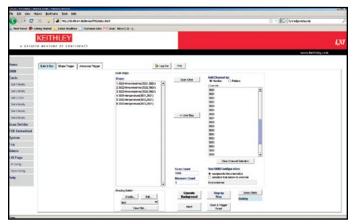
LXI Core 2011 with LXI Clock Synchronization, LXI Timestamped Data, LXI Event Messaging, LXI Event Log.

Transportable Memory, USB 2.0 Device Port

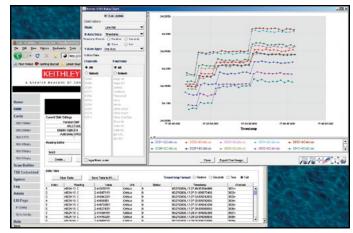
All Model 3706A mainframes contain a USB device port for easy transfer of readings, configurations, and test scripts to memory sticks. This port, which is located on the front panel, provides you with easy access to and portability of measurement results. Simply plug in a memory stick and, with a few simple keystrokes, gain access to virtually unlimited memory storage. Additional capabilities include: saving and recalling system configurations and storage for TSP scripts.



System Switch/Multimeter and Plug-In Cards


Embedded Web Server

The built-in Web interface offers a quick and easy method to control and analyze measurement results. Interactive schematics of each card in the mainframe support point-and-click control for opening and closing switches. A scan list builder is provided to guide users through the requirements of a scan list (such as trigger and looping definitions) for more advanced applications. When the mainframe is ordered with the multimeter, additional Web pages are included for measurement configuration and viewing, including a graphing toolkit.


Built-in Web Server Interface

1. Configure your switch channels and measurement functions. Configure the DMM to make your measurements at the desired speed, resolution, etc. and assign them to the desired channels.

2. Build and run your automated scan list. The toolkit makes it easy to build and execute an automated sequence of channel-open and channel-close commands and triggered multimeter measurements.

3. Analyze your data. View your results in real-time or historical mode with point-and-click simplicity. Data can be exported directly to your PC in either numerical or graphical formats for presentation or other applications.

Model 3706A front panel

Model 3706A-S front panel

Model 3706A-NFP and Model 3706A-SNFP front panel

Model 3706A rear panel

System Switch/Multimeter and Plug-In Cards

High Performance Multimeter Specifications (Rev. A)

DC Specifications

CONDITIONS: 1 PLC or 5 PLC.

For <1PLC, add appropriate "ppm of range" adder from "RMS Noise" table.

Includes rear panel Analog Backplane connector and transducer conversion. Refer to DC Notes for additional card uncertainties.

				Input Resistance	Accuracy: ±(ppm of reading + ppm of range) (ppm = parts per million) (e.g., 10ppm = 0.001%)			Temperature	
Function	Range ¹	Resolution	Test Current or Burden Voltage	or Open Circuit Voltage ²	24 Hour ³ 23°C ± 1°C			Coefficient 0°–18°C and 28°–50°C	
	100.00000 mV 19	0.01 μV		>10 GΩ or 10 MΩ ±1%	10 + 9	25 + 9	30 + 9	(1 + 5)/°C	
	1.0000000 V 19	$0.1~\mu V$		>10 G Ω or 10 M Ω ±1%	7 + 2	25 + 2	30 + 2	(1 + 1)/°C	
Voltage ⁴	10.000000 V	1 μ V		>10 G Ω or 10 M Ω ±1%	7 + 2	20 + 2	25 + 2	$(1 + 1)/^{\circ}C$	
	100.00000 V	$10 \mu V$		10 MΩ ±1%	15 + 6	35 + 6	40 + 6	(5 + 1)/°C	
	300.00000 V	100 μ V		10 MΩ ±1%	20 + 6	35 + 6	40 + 6	$(5 + 1)/^{\circ}C$	
	1.0000000 Ω	$0.1~\mu\Omega$	10 mA	8.2 V	15 + 80	40 + 80	60 + 80	(8 + 1)/°C	
	10.0000000 Ω	$1 \mu\Omega$	10 mA	8.2 V	15 + 9	40 + 9	60 + 9	$(8 + 1)/^{\circ}C$	
	100.00000 Ω	$10 \mu\Omega$	1 mA	13.9 V	15 + 9	45 + 9	65 + 9	(8 + 1)/°C	
	$1.00000000 \ k\Omega$	$100 \mu\Omega$	1 mA	13.9 V	20 + 4	45 + 4	65 + 4	$(8 + 1)/^{\circ}C$	
Resistance 4, 5, 6, 7	$10.0000000 \ k\Omega$	1 m Ω	100 μΑ	9.1 V	15 + 4	40 + 4	60 + 4	(8 + 1)/°C	
	$100.00000 \text{ k}\Omega$	10 mΩ	10 μA	14.7 V	20 + 4	45 + 5	65 + 5	(8 + 1)/°C	
	$1.00000000~{\rm M}\Omega$	100 mΩ	10 μA	14.7 V	25 + 4	50 + 5	70 + 5	(8 + 1)/°C	
	$10.000000~{\rm M}\Omega$	1 Ω	$0.64~\mu\text{A}/\!/10~\text{M}\Omega$	6.4 V	150 + 6	200 + 10	400 + 10	$(70 + 1)/^{\circ}C$	
	$100.00000~{\rm M}\Omega$	10 Ω	$0.64~\mu\text{A}/\!/10~\text{M}\Omega$	6.4 V	800 + 30	2000 + 30	2000 + 30	$(385 + 1)/^{\circ}C$	
	1.0000000 Ω	$1 \mu\Omega$	10 mA	27 mV	25 + 80	50 + 80	70 + 80	(8 + 1)/°C	
D C!!4	10.0000000 Ω	$10 \mu\Omega$	1 mA	20 mV	25 + 80	50 + 80	70 + 80	$(8 + 1)/^{\circ}C$	
Dry Circuit Resistance 6, 8	100.00000 Ω	$100 \mu\Omega$	100 μΑ	20 mV	25 + 80	90 + 80	140 + 80	(8 + 1)/°C	
Resistance "	$1.00000000 \ k\Omega$	1 m Ω	$10 \mu A$	20 mV	25 + 80	180 + 80	400 + 80	(8 + 1)/°C	
	$2.00000000~k\Omega$	10 mΩ	5 μΑ	20 mV	25 + 80	320 + 80	800 + 80	(8 + 1)/°C	
Continuity (2W)	1.000 kΩ	100 mΩ	1 mA	13.9 V	40 + 100	100 + 100	100 + 100	(8 + 1)/°C	
	10.000000 μΑ	1 pA	<61 mV		40 + 50	300 + 50	500 + 50	(35 + 9)/°C	
	$100.00000~\mu A$	10 pA	<105 mV		50 + 9	300 + 30	500 + 30	$(50 + 5)/^{\circ}C$	
	1.0000000 mA	100 pA	<130 mV		50 + 9	300 + 30	500 + 30	$(50 + 5)/^{\circ}C$	
Current 9	10.000000 mA	1 nA	<150 mV		50 + 9	300 + 30	500 + 30	$(50 + 5)/^{\circ}C$	
	100.00000 mA	10 nA	<0.4 V		50 + 9	300 + 30	500 + 30	$(50 + 5)/^{\circ}C$	
	1.0000000 A	100 nA	<0.6 V		200 + 60	500 + 60	800 + 60	(50 + 10)/°C	
	3.0000000 A	$1 \mu A$	<1.8 V		1000 + 75	1200 + 75	1200 + 75	$(50 + 10)/^{\circ}C$	

TEMPERATURE

(Displayed in °C, °F, or K. Exclusive of probes errors.) THERMOCOUPLES (Accuracy based on ITS-90):

			90 Day/1 Year, 23°C ± 5°C	90 Day/1 Year, 23°C ± 5°C		90 Day/1 Year, 23°C ± 5°C	Temperature
Туре	Range	Resolution	Simulated reference junction	Using 3720, 3721, or 3724 Cards	Range	Using 3720, 3721, or 3724 Cards	Coefficient 0°–18°C and 28°–50°C
J	$-150 \text{ to} + 760^{\circ}\text{C}$	0.001°C	0.2°C	1.0°C	−200 to −150°C	1.5°C	0.03°C/°C
K	-150 to +1372°C	0.001°C	0.2°C	1.0°C	−200 to −150°C	1.5°C	0.03°C/°C
N	-100 to +1300°C	0.001°C	0.2°C	1.0°C	−200 to −100°C	1.5°C	0.03°C/°C
T	−100 to +400°C	0.001°C	0.2°C	1.0°C	−200 to −100°C	1.5°C	0.03°C/°C
E	-150 to +1000°C	0.001°C	0.2°C	1.0°C	−200 to −150°C	1.5°C	0.03°C/°C
R	+400 to +1768°C	0.1°C	0.6°C	1.8°C	0 to +400°C	2.3°C	0.03°C/°C
S	+400 to +1768°C	0.1°C	0.6°C	1.8°C	0 to +400°C	2.3°C	0.03°C/°C
В	+1100 to +1820°C	0.1°C	0.6°C	1.8°C	+350 to +1100°C	2.8°C	0.03°C/°C

4-WIRE RTD OR 3-WIRE RTD (100 Ω platinum [PT100], D100, F100, PT385, PT3916, or user 0Ω to $10k\Omega$) (Selectable Offset compensation On or Off):

For 3-wire RTD, dmm.connect=dmm.CONNECT_FOUR_WIRE, $\leq 0.1\Omega$ lead resistance mismatching in Input H1 and LO. Add 0.25° C/ 0.1Ω of lead resistance mismatch.

3-Wire RTD	−200 to +630°C	0.01°C	0.75°C	0.003°C/°C
4-Wire RTD	−200 to +630°C	0.01°C	0.06°C	0.003°C/°C

THERMISTOR: $2.2k\Omega$, $5k\Omega$, and $10k\Omega$. Not recommended with Model 3724 card. See Model 3724 manual for "Measurement Considerations."

-80 to +150°C 0.01°C 0.08°C 0.000°C 0.000°C

System Switch/Multimeter and Plug-In Cards

DC SPE	EDS vs.	RMS NOISE		F		6, PPM of R			_					
Single Chan	nel, 60Hz (5	60Hz) Operation.		Add		ise Calculator		,"	Measi	ırements				
1PLC and 51 DC specifica		ise are included in		Add $2.5 \times$ "RMS Noise" to "ppm of range" (e.g., $10V @ 0.006$ PLC) "ppm of range" = 2.5×7.0 ppm + 2 ppm					into Buffer (rdgs/s) ¹³		Measurement to PC (ms/rdg) Azero Off 13			
Function	NPLC 5 14	Aperture (ms)	Digits	100mV	1V 0.07	10V	100V	300V	Azero On	Azero Off	Ethernet	GPIB	USB	
	114	83.3 (100)	7½	1.0		0.05	0.7	0.2	9.5 (8)	12 (10)	86.3 (104)	86.1 (102.8)	86.3 (103.1)	
		16.7 (20)	71/2	0.9	0.12	0.1	0.8	0.35	42 (33)	59.8 (49.5)	19.4 (22.7)	19.5 (22.8)	19.9 (23.2)	
	0.2 14	3.33 (4.0)	6½	2.5	0.32	0.3	2.5	1.0	50 (40)	60 (50)	19.4 (22.7)	19.5 (22.8)	19.9 (23.2)	
DCV	0.2 14	3.33 (4.0)	6½	3.5	1.7	0.7	3.5	1.5	120 (100)	295 (235)	7.6 (8.3)	6.2 (6.8)	6.4 (7.0)	
	0.06 15	1.0 (1.2)	5½	12	3.0	1.5	8.0	3.5	205 (165)	935 (750)	1.40 (1.80)	1.50 (1.80)	1.60 (2.30)	
	0.006 15	0.100 (0.120)	4½	55	15	7.0	70	35	218 (215)	6,200 (5,500)	0.55 (0.57)	0.65 (0.67)	0.75 (0.77)	
	0.0005 15	0.0083 (0.001)	3½	325	95 1 k Ω	95 10k Ω	900	410	270 (270)	14,600 (14,250)	0.50 (0.5)	0.60 (0.60)	0.70 (0.70)	
	5 14	83.3 (100)	71/2	$\frac{10-100\Omega}{2.0}$	0.5	0.4			9.5 (8)	12 (10)	87.0 (105)	86.1 (103)	86.5 (104)	
	114	()				0.4	_	_	. ()	()	()	(- /	()	
2WΩ	0.2 12, 14	16.7 (20)	7½ 6½	3.5 6.5	0.8 1.7				42 (33)	59.8 (49.5)	21.0 (24.3)	19.5 (22.8)	19.9 (23.2)	
∠wsz (≤10kΩ)	0.2 14	3.33 (4.0)	6½	8.0	4.5	1.5 5.5	_	_	50 (40)	60 (50)	21.0 (24.3)	19.5 (22.8)	19.9 (23.2)	
(_10R22)	0.2 14	3.33 (4.0)	5½ 5½		6	6.5	_	_	120 (100) 205 (165)	295 (235) 935 (750)	7.6 (8.3)	6.2 (6.8)	6.4 (7.0)	
	0.006 15	1.0 (1.2) 0.100 (0.120)	5½ 4½	15 60	15	15	_	_	218 (215)	6,200 (5,500)	1.40 (1.80) 0.55 (0.57)	1.50 (1.80) 0.65 (0.67)	1.60 (2.30) 0.75 (0.77)	
	0.0005	0.100 (0.120)	3½ 3½	190	190	190	_	_	270 (270)	14,100 (13,700)	0.55 (0.57)	0.69 (0.67)	0.79 (0.77)	
	0.0005	0.0065 (0.001)	372	10µA		190 1mA-100mA			2/0 (2/0)	14,100 (15,700)	0.30 (0.3)	0.00 (0.00)	0.70 (0.70)	
	5 14	83.3 (100)	7½	3.5	1.6	1.6	2.9	2.0	9.5 (8)	12 (10)	88 (103)	86.1 (102.8)	86.3 (103.1)	
	114	16.7 (20)	6½	3.5	1.1	1.1	2.2	1.8	42 (33)	59.8 (49.5)	21.0 (22.7)	19.5 (22.8)	19.8 (23.1)	
	0.2 12, 14	3.33 (4.0)	5½	50	5.0	3.0	4.0	8.0	50 (40)	60 (50)	19.4 (22.7)	19.5 (22.8)	19.8 (23.1)	
DCI	0.2 14	3.33 (4.0)	41/2	100	35	12	4.0	8.0	120 (100)	295 (235)	7.6 (8.3)	6.2 (6.8)	6.4 (7.0)	
	0.06 15	1.0 (1.2)	41/2	350	35	20	8.0	20	205 (165)	935 (750)	1.40 (1.80)	1.50 (1.80)	1.60 (2.30)	
	0.006 15	0.100 (0.120)	41/2	400	200	40	50	100	218 (215)	6,200 (5,500)	0.55 (0.57)	0.65 (0.67)	0.75 (0.77)	
	0.0005 15	0.0083 (0.001)	3½	2500	450	250	325	750	270 (270)	14,100 (13,700)	0.50 (0.5)	0.60 (0.60)	0.79 (0.77)	
	0.0009	0.0003 (0.001)		1Ω	10-100Ω		10kΩ	750	270 (270)	11,100 (15,700)	0.50 (0.5)	0.00 (0.00)	0.70 (0.70)	
	5 14	83.3 (100)	7½	5.5	0.8	0.5	0.5		5 (4)	5.9 (4.7)	173 (206)	173 (206)	173 (206)	
	1 14	16.7 (20)	71/2	15	1.4	0.5	0.7	_	23.5 (18.5)	29 (23)	39 (46)	39 (46)	39 (46)	
ANY CO	0.2 12, 14	3.33 (4.0)	51/2	100	30	10	50	_	26.5 (21)	30 (24)	39 (46)	39 (46)	39 (46)	
4W Ω	0.2 14	3.33 (4.0)	5½	300	50	10	63	_	80 (60)	120 (95)	12.3 (14.5)	11.3 (13.3)	11.7 (13.7)	
	0.06 15	1.0 (1.2)	4½	500	50	15	70	_	140 (110)	285 (225)	6.2 (7.2)	6.3 (7.3)	6.5 (7.6)	
	0.006 15	0.100 (0.120)	41/2	750	75	30	100	_	200 (195)	580 (565)	4.2 (4.4)	4.3 (4.5)	4.6 (4.8)	
	0.0005 15	0.0083 (0.001)	31/2	3500	450	250	250		210 (205)	650 (645)	4.2 (4.4)	4.3 (4.5)	4.6 (4.8)	
				1Ω	10-100Ω	1kΩ	10k Ω							
	5 14	83.3 (100)	71/2	5.5	0.8	0.5	0.5		2.5 (2.0)	2.9 (2.3)	343 (427)	341 (425)	342 (426)	
4WΩ	1 14	16.7 (20)	71/2	16	1.5	0.7	1.5	_	12.7 (10)	14 (11.2)	77 (95)	74 (92)	75 (93)	
OCOMP	$0.2^{12,14}$	3.33 (4.0)	$6\frac{1}{2}$	45	4.5	2.1	3.5	_	14 (11.2)	15 (12)	70 (86.5)	70 (86.5)	70 (86.5)	
	0.2 14	3.33 (4.0)	5½	500	50	13	30	_	46.5 (37)	56 (44)	22.7 (25)	20.5 (23)	21.1 (24)	
	0.0005 15	0.0083 (0.001)	3½	4500	650	400	400		129 (125)	215 (210)	6.7 (6.7)	6.8 (6.8)	7 (7)	
				1-10Ω	100Ω	1kΩ	2kΩ							
	5 14	83.3 (100)	6½	8.0	10	10	8.0		2.5 (2.0)	2.9 (2.3)	347 (430)	345 (428)	346 (429)	
Dry-CktΩ	1 14	16.7 (20)	5½	17	22	25	28	_	12 (9.5)	13 (10)	80 (99)	77 (95)	78 (97)	
OCOMP	0.2 12, 14	3.33 (4.0)	$4\frac{1}{2}$	50	50	50	50	_	14 (11.2)	15 (12)	70 (86.5)	70 (86.5)	70 (86.5)	
	0.2 14	3.33 (4.0)	31/2	500	1000	1000	1500	_	35 (30)	45 (36)	27 (33)	25 (31)	26 (32)	
	0.0005 15	0.0083 (0.001)	21/2	8500	8500	8500	8500		84 (84)	115 (110)	10.7 (10.7)	10.7 (10.7)	11 (11)	

RTD SPEEDS	s vs. NOIS	E 1 PLC and 5 PLC Noi	se are included	in RTD Specifica	ations.	Measurement	s into Buffer 13	Measure	ement to PC 13 (1	ms/rdg)
Sing	le Channel, 6	0Hz (50Hz) Operation	on	Add °C to	Reading 16	(rd	g/s)		Azero Off	. 0.
Function	NPLC	Aperture (ms)	Digits	4-Wire	3-Wire	Azero On	Azero Off	Ethernet	GPIB	USB
	5 14	83.3 (100)	71/2	0	0	5 (4)	5.9 (4.7)	173 (206)	173 (206)	173 (206)
	114	16.7 (20)	71/2	0	0	23.5 (18.5)	29 (23)	39 (46)	39 (46)	39 (46)
	$0.2^{12, 14}$	3.33 (4.0)	51/2	0.01	0.01	26.5 (21)	30 (24)	39 (46)	39 (46)	39 (46)
OCOMP OFF	0.2^{14}	3.33 (4.0)	51/2	0.18	0.18	80 (60)	120 (95)	12.3 (14.5)	11.3 (13.3)	11.7 (13.7)
	0.06^{15}	1.0 (1.2)	41/2	0.24	0.24	140 (110)	285 (225)	6.2 (7.2)	6.3 (7.3)	6.5 (7.6)
	0.006^{15}	0.100 (0.120)	41/2	0.37	0.37	200 (195)	580 (565)	4.2 (4.4)	4.3 (4.5)	4.6 (4.8)
	0.0005^{15}	0.0083 (0.001)	31/2	3.10	3.10	209 (205)	650 (645)	4.2 (4.4)	4.3 (4.5)	4.6 (4.8)
	5 14	83.3 (100)	71/2	0	0	2.5 (2.0)	2.9 (2.3)	343 (427)	341 (425)	342 (426)
	114	16.7 (20)	71/2	0	0	12.7 (10)	14 (11.2)	77 (95)	74 (92)	75 (93)
OCOMP ON	$0.2^{12, 14}$	3.33 (4.0)	61/2	0.02	0.02	14 (11.2)	15 (12)	70 (86.5)	70 (86.5)	70 (86.5)
	0.2^{14}	3.33 (4.0)	5½	0.38	0.38	46.0 (37)	56 (44)	22.7 (25)	20.5 (23)	21.1 (24)
	0.0005^{15}	0.0083 (0.001)	31/2	4.67	4.67	128 (125)	215 (210)	6.7 (6.7)	6.8 (6.8)	7 (7)

System Switch/Multimeter and Plug-In Cards

SYSTEM PERFORMANCE 13, 14

 $3\frac{1}{2}$ -Digit Mode, Azero off, nPLC = 0.0005. Time includes function change from either DCV or $2W\Omega$ to listed function.

Function	Function Change (ms)	Range Change (ms)	Auto-range (ms)
DCV or 2WΩ (<10kΩ)	10	10	10
4WΩ (<10kΩ)	20	20	20
DCI	10	10	10
Frequency or Period 17	110	10	-
ACV or ACI 17	20	85	300

Buffer Transfer Speed	Ethernet	GPIB	USB
Average for 1000 readings	2450/s	2000/s	1800/s
Average for 1000 readings with timestamp	2300/s	1800/s	1600/s

Single Command Excecution Time (ms)

Card	Command	Ethernet	GPIB	USB
3720, 3721, 3722, 3730	channel.close (ch_list) or channel.open (ch_list)	5.7	5.8	6.1
3723, 3724 3731, 3732 ¹⁸			2.4	2.7
3740	channel.close (ch_list 1-28) or channel.open (ch_list 1-28)	10.7	10.8	11.1
3/10	channel.close (ch_list 29-32) or channel.open (ch_list 29-32)	22.7	22.8	23.1

DC MEASUREMENT CHARACTERISTICS

DC VOLTS

A-D LINEARITY: 1.0ppm of reading + 2.0 ppm of range.

INPUT IMPEDANCE: 100mV–10V Ranges: Selectable >10G Ω // <400pF or 10M Ω ±1%. 100V–300V Ranges: 10M Ω ±1%.

INPUT BIAS CURRENT: <50pA at 23°C with dmm.autozero=dmm.OFF or dmm.inputdivider=dmm.ON.

COMMON MODE CURRENT: <500nA p-p for ≤1MHz.

AUTOZERO OFF ERROR: For DCV $\pm 1^{\circ}$ C and ≤ 10 minutes, add $\pm (8$ ppm of reading $+ 5\mu V)$.

INPUT PROTECTION: 300V all ranges.

COMMON MODE VOLTAGE: 300V DC or 300Vrms (425V peak for AC waveforms) between any terminal and chassis.

RESISTANCE

MAX. 4W Ω LEAD RESISTANCE: 5Ω per lead for 1Ω range; 10% of range per lead for 10Ω -1k Ω ranges; 1k Ω per lead for all other ranges.

MAX. 4WΩ LEAD RESISTANCE (DRY CKT): 0.5Ω per lead for 1Ω range; 10% of range per lead for 10Ω – 100Ω ranges; 50Ω per lead for $1k\Omega$ – $2k\Omega$ ranges.

INPUT IMPEDANCE: 1Ω - 10Ω Ranges: $99k\Omega \pm 1\% // < 1\mu F$.

100Ω–2kΩ Ranges: 10MΩ $\pm 1\%$ // $< 0.015 \mu$ F.

OFFSET COMPENSATION: Selectable on 4W Ω 1Ω-10k Ω ranges.

OPEN LEAD DETECTOR: Selectable per channel. 1.5 μ A, $\pm 20\%$ sink current per DMM SHI and SLO lead. Default on.

CONTINUITY THRESHOLD: Adjustable 1 to 1000Ω .

AUTOZERO OFF ERROR: For $2W\Omega \pm 1^{\circ}C$ and ≤ 10 minutes, add $\pm (8ppm \text{ of reading} + 0.5m\Omega)$ for 10Ω and $5m\Omega$ for all other ranges.

INPUT PROTECTION: 300V all ranges.

DC MEASUREMENT CHARACTERISTICS (continued)

DC CURRENT

AUTOZERO OFF ERROR: For ±1°C and ≤10 minutes, add ±(8ppm of reading + range error). Refer to table below.

3 A	1 A	100 mA	10 mA	1 mA	100 µA	10 µA		
0.05 Ω	0.05 Ω	1Ω	10 Ω	100 Ω	1 kΩ	$6~k\Omega$		
<1.75 V	<0.55 V	<0.4 V	<150 mV	<130 mV	<105 mV	<61 mV		
<2.35 V	<1.15 V	<0.4 V	<150 mV	<130 mV	<105 mV	<61 mV		
$100\mu\mathrm{A}$	$100\mu\mathrm{A}$	5 μΑ	$0.5~\mu\mathrm{A}$	50 nA	5 nA	0.85 nA		
For each additional amp after ±1.5A input, add the following to ppm of range:								
_	120	60	60	60	60	95		
	0.05 Ω <1.75 V <2.35 V 100 μA	0.05 Ω 0.05 Ω <1.75 V <0.55 V <2.35 V <1.15 V 100 μ A 100 μ A 2 after ±1.5A input, a	0.05 Ω 0.05 Ω 1 Ω <1.75 V <0.55 V <0.4 V <2.35 V <1.15 V <0.4 V <0.4 V <0.4 V <0	0.05 Ω 0.05 Ω 1 Ω 10 Ω <1.75 V $<0.55 V$ $<0.4 V$ $<150 mV<2.35 V$ $<1.15 V$ $<0.4 V$ $<150 mV100 \mu\text{A} 100 \mu\text{A} 5 \mu\text{A} 0.5 \mu\text{A} =0.5 \mu\text{A}$	0.05 Ω 0.05 Ω 1 Ω 10 Ω 100 Ω <1.75 V $<0.55 V$ $<0.4 V$ $<150 mV$ $<130 mV<2.35 V$ $<1.15 V$ $<0.4 V$ $<150 mV$ $<130 mV100 \mu\text{A} 100 \mu\text{A} 5 \mu\text{A} 0.5 \mu\text{A} 50 nA \cos \mu after ±1.5A input, add the following to ppm of range$	0.05 Ω 0.05 Ω 1 Ω 10 Ω 100 Ω 1 kΩ <1.75 V <0.55 V <0.4 V <150 mV <130 mV <105 mV <2.35 V <1.15 V <0.4 V <150 mV <130 mV <105 mV <100 μA <0.4 V <0.5 μA <0.5 μΑ <0.5		

INPUT PROTECTION: 3A, 250V fuse.

THERMOCOUPLES

CONVERSION: ITS-90.

REFERENCE JUNCTION: Internal, External, or Simulated (Fixed).

OPEN LEAD DETECTOR: Selectable per channel. Open >1.15kΩ ±50Ω. Default on.

COMMON MODE ISOLATION: 300V DC or 300Vrms (425V peak for AC waveforms), >10G Ω and <350pF any terminal to chassis.

DC NOTES

- 1. 20% overrange on DC functions except 1% on 300V range and 3.33% on 3A range
- 2. $\pm 5\%$ (measured with $10 M\Omega$ input resistance DMM, $> 10 G\Omega$ DMM on $10 M\Omega$ and $100 M\Omega$ ranges). Refer to table for other 2 W/4 W configurations. For Dry Circuit, +20%, < 1 mV with dmm.offsetcompensation=ON for $100\Omega-2 k\Omega$ ranges.

Range	2W	4W	4W-Kelvin	Ocomp 4W	Ocomp 4W-Kelvin
1, 10Ω	8.2 V	8.2 V	8.2 V	12.1 V	12.1 V
100, 1kΩ	13.9 V	14.1 V	13.9 V	15.0 V	12.7 V
$10k\Omega$	9.1 V	9.1 V	9.1 V	0.0 V	0.0 V
100k, 1MΩ	12.7 V	14.7 V	12.7 V	_	-
10M, 100MΩ	6.4 V	6.4 V	6.4 V	_	_

- Relative to calibration accuracy.
- 4. Add the following additional uncertainty with -ST accessory

	\pm (ppm of range)			\pm (ppm of reading + ppm of range)			
Card	100 mV	1 V	10V	100kΩ	1 M Ω	10 M Ω	100 M Ω
3720, 3721, 3722, and 3730	45	4.5	-	8 + 5	8 + 0.5	-	-
3723	60	6.0	-	8 + 6	8 + 0.5	-	_
3724	45	4.5	_	8 + 5	80 + 0.5	250 + 1	5000 + 1
3731	800	80	8	8 + 80	40 + 8	0 + 25	0 + 15
3732 (Quad 4×28)	200	20	2	8 + 20	40 + 2	0 + 7	0 + 4

5. Specifications are for 4-wire Ω , $1\Omega-1k\Omega$ with offset compensation on. For Series 3700A plug-in cards, L_{SYNC} and offset compensation on. 1Ω range is 4-wire only. Model 3724 card: $1k\Omega-100M\Omega$ ranges only. Model 3731 card: $100\Omega-100M\Omega$ ranges only.

For 2-wire Ω specifications, add the following to "ppm of range" uncertainty:

		Rear Panel Connector		
DMM Connect Relays	Rel Enable	or 3700 Card	3724 Card	3731 Card
CONNECT_ALL	ON	100 mΩ	500 mΩ	900 mΩ
CONNECT_ALL	OFF	1.5 Ω	64 Ω	2.3 Ω
CONNECT_TWO_WIRE	ON	700 mΩ	1.2 Ω	1.5 Ω
CONNECT TWO WIRE	OFF	15 O	64 O	23 O

- 6. Test current with dmm.offsetcompensation=OFF, ±5%.
- Add the following to "ppm of reading" uncertainty when using Series 3700A Plug-in Cards in Operating Environment ≥50%RH.

Card	10k Ω	100kΩ	$1 M\Omega$	$10 \mathrm{M}\Omega$	$100 M\Omega$
3720, 3721, 3724, 3730, 3731, 3732 (Quad 4×28) with MTC D-Shell connector	1 ppm	10 ppm	0.01%	0.1%	1%
3720, 3721, 3724, 3730, 3731, 3732 (Quad 4×28) with -ST screw terminal module	10 ppm	100 ppm	0.1%	1%	10%
3722 and 3723	10 ppm	100 ppm	0.1%	1%	10%

Series 3700A Plug-in Cards Operating Environment: Specified for 0° to 50° C, \leq 70%RH at 35°C.

8. Dry-Ckt Ω is 4-wire only. Specifications with offset compensation and L_{SYNC} on.

Card	Ranges
3720, 3721, and 3730	$1 \Omega - 2 k\Omega$
3722, 3723, and 3732	$10 \Omega - 2 k\Omega$
3724	$1 \text{ k}\Omega - 2 \text{ k}\Omega$
3731	$100 \Omega - 2 k\Omega$

System Switch/Multimeter and Plug-In Cards

DC NOTES (continued)

- Includes Analog Backplane 15-pin rear panel connector. For 3721, refer to DC Current table for additional uncertainties.
- 10. For L_{SYNC} On, line frequency $\pm 0.1\%$.

	nPLC	5	1	<0.2	< 0.01
L _{SYNC} On	NMRR	110 dB	90 dB	45 dB	
L _{SYNC} Off	NMRR	60 dB, ±2 dB	60 dB, ±2 dB	_	_

11. For $1k\Omega$ unbalance in LO lead. AC CMRR is 70dB.

nPLC	5	1	0.2 12	≤0.2
CMRR	140 dB	140 dB	120 dB	80 dB

- 12. For $\rm L_{SYNC}$ On.
- 13. Reading rates are for 60Hz (50Hz) operation using factory defaults operating conditions dmm.reset("all"), Autorange off, dmm.autodelay—dmm.OFF, dmm.opendetector=dmm.OFF, format.data.—format.SREAL. Ranges as follows: DCV = 10V, ZWQ.4WΩ = 1kΩ, DCI = 1mA, DTy-Ckt Ω = 10Ω, ACI = 1mA, and ACV = 1V.
- For Dry-Ckt Ω with Offset Comp OFF $2k\Omega$, 60 rdg/s max. Dry-Ckt Ω with Offset Comp ON $2k\Omega$, 29.5 rdg/s max. For temperature reading rates use DCV for T/C and $2W\Omega$ for Thermistor. Speeds are typical and include measurements and data transfer out the Ethernet, GPIB, or USB.
- 14. DMM configured for single reading, dmm.measurecount=1, and print(dmm.measure()). May require additional settling delays for full accuracy, depending on measurement configuration.
- 15. DMM configured for multisample readings and single buffer transfer, dmm.measurecount=1000, buf=dmm.makebuffer(1000), dmm.measure(buf), and printbuffer(1,1000,buf).
- 16. dmm.autozero=dmm.ON. RMS noise using low thermal short for DCV, 2WΩ, 4WΩ, and Dry-Ckt Ω. For DCI, dmm.connect=dmm.CONNECT_NONE or 0. For RTD, noise using low thermal 190Ω precision resistor. Includes Model 3721 card accuracies. RMS noise values are typical.
- 17. For DCV or $2W\Omega$ to Frequency or Period, dmm.nplc=0.2 and dmm.aperture=0.01 sec. For ACI or ACV, dmm.detectorbandwidth=300. For ACI or ACV with dmm.autodelay=dmm.ON, best speed is 65ms.
- 18. Speeds are within same multiplexer bank. Add an additional 8ms when changing banks or slots.
- 19. When properly zeroed using REL function.

AC Specifications

			Calibration		Accura	cy: ±(% of reading	g + % of range) 2	3°C ± 5°C	
Function	Range ¹	Resolution	Cycle	3 Hz-5 Hz	5 Hz-10 Hz	10 Hz –20 kHz	20 kHz-50 kHz	50 kHz-100 kHz	100 kHz-300 kHz
	100.0000 mV 1.000000 V	0.1 μV 1 μV	90 Day (100mV-100V)	1.0 + 0.03	0.30 + 0.03	0.05 + 0.03	0.11 + 0.05	0.6 + 0.08	4.0 + 0.5
W-14?	10.00000 V 100.0000 V	$10 \mu V$ $100 \mu V$	1 Year (100mV-100V)	1.0 + 0.03	0.30 + 0.03	0.06 + 0.03	0.12 + 0.05	0.6 + 0.08	4.0 + 0.5
Voltage ²	300.0000 V	1 mV	90 Day	1.0 + 0.05	0.30 + 0.05	0.05 + 0.05	0.11 + 0.08	0.6 + 0.11	4.0 + 0.8
	300.0000 V	1 mV	1 Year	1.0 + 0.05	0.30 + 0.05	0.06 + 0.05	0.12 + 0.08	0.6 + 0.11	4.0 + 0.8
			Temp. Coeff. /°C³ (all ranges)	0.010 + 0.003	0.030 + 0.003	0.005 + 0.003	0.006 + 0.005	0.01 + 0.006	0.03 + 0.01
				3 Hz-5 Hz	5 Hz-10 Hz	10Hz –2 kHz	2 kHz –5 kHz	5 kHz –10 kHz	
	1.000000 mA ⁷	1 nA		1.0 + 0.04	0.30 + 0.04	0.08 + 0.03	0.09 + 0.03	0.09 + 0.03	•
	10.00000 mA	10 nA		1.0 + 0.04	0.30 + 0.04	0.08 + 0.03	0.09 + 0.03	0.09 + 0.03	
Current ²	100.0000 mA	100 nA	90 Day/1 Year	1.0 + 0.04	0.30 + 0.04	0.08 + 0.03	0.09 + 0.03	0.09 + 0.03	
current	1.000000 A	1μ A		1.0 + 0.04	0.30 + 0.04	0.20 + 0.04	0.88 + 0.04	2.0 + 0.04	
	3.000000 A	$10 \mu\text{A}$		1.0 + 0.05	0.30 + 0.05	0.20 + 0.05	0.88 ± 0.05	2.0 + 0.05	
			Temp. Coeff. /°C³ (all ranges)	0.10 + 0.004	0.030 + 0.004	0.005 + 0.003	0.006 + 0.005	0.006 + 0.005	
				Accuracy: ±	(ppm of reading +	offset ppm)			
Frequency ⁴				3 Hz-500 kHz	3 Hz-500 kHz	333 ms-2 μs	_		
and Period	100.0000 mV	0.333 ppm	20.5 11.77	80 + 0.333	80 + 0.333	(0.25 s gate)	-		
	to	3.33 ppm	90 Day/1 Year	80 + 3.33	80 + 3.33	(100 ms gate)			
	300.0000 V	33.3 ppm	(all ranges)	80 + 33.3	80 + 33.3	(10 ms gate)			

ADDITIONAL	UNCERTAINTY :	±(% of reading)							
Low Frequency		Detector Bandwid	th	Additional Uncertainty	Detector	Crest Factor⁵ Maximum Crest Factor: 5 at full-scale			
Uncertainty ´	3 (3 Hz-300 kHz)	30 (30 Hz-300 kHz)	300 (300 Hz-300 kHz)	±(% of reading)	Bandwidth	1-2	2-3	3-4	4-5
20 Hz-30 Hz	0	0.3	_	5 Hz-10 Hz	3	0.50	1.20	1.30	1.40
30 Hz-50 Hz	0	0	-	10 Hz-30 Hz	3	0.20	0.30	0.60	0.90
50 Hz-100 Hz	0	0	4.0	30 Hz-100 Hz	3 or 30	0.20	0.30	0.60	0.90
100 Hz-200 Hz	0	0	0.72	>100 Hz					0.40
200 Hz-300 Hz	0	0	0.18	>100 HZ	3 or 30	0.05	0.15	0.30	
300 Hz-500 Hz	0	0	0.07	300 Hz-500 Hz	300 only	0.50	1.20	1.30	1.40
>500 Hz	0	0	0	≥500 Hz	300 only	0.05	0.15	0.30	0.40

System Switch/Multimeter and Plug-In Cards

AC SPEEDS Single Channel, 60Hz (50Hz) Operation

Detector		tector			urements into Bi	uffer 9 (rdg/s)	Measurement to PC 9 (ms/rdg)		
Function	Bandwidth	NPLC	Aperture (ms)	Digits	Azero On	Azero Off	Ethernet	GPIB	USB
	3	N/A	N/A	6½	0.45 (0.45)	N/A	2150 (2150)	2150 (2150)	2150 (2150)
	30	N/A	N/A	61/2	2.5 (2.5)	N/A	400 (400)	400 (400)	400 (400)
	300	1.0^{10}	16.67 (20)	61/2	42 (33)	59.5 (50)	19.4 (22.7)	19.5 (22.8)	19.8 (23.1)
ACI / ACV	300	0.2 10	3.33 (4.0)	61/2	120 (100)	295 (235)	7.6 (8.3)	6.2 (6.8)	6.4 (7.0)
	300	0.06 11	1.0 (1.2)	51/2	170 (165)	935 (750)	1.40 (1.80)	1.50 (1.80)	1.60 (2.30)
	300	0.006 11	0.100 (0.120)	41/2	218 (215)	6,200 (5,500)	0.55 (0.57)	0.65 (0.67)	0.75 (0.77)
	300	0.0005^{11}	0.0083 (0.001)	31/2	218 (215)	14,600 (14,250)	0.50 (0.5)	0.60 (0.60)	0.70 (0.70)
Frequency/Period	N/A	N/A	10-273	N/A	2× input period + gate time	N/A	2× input period + gate time + 2.7ms	2× input period + gate time + 2.8ms	2× input period + gate time + 3.1ms

AC MEASUREMENT CHARACTERISTICS

AC VOLTS

MEASUREMENT METHOD: AC-coupled, True RMS. **INPUT IMPEDANCE:** $1M\Omega \pm 2\%$ // by <150pF.

INPUT PROTECTION: 300VDC or 300Vrms rear inputs or 37xx cards.

AC CURRENT

 $\label{eq:measurement} \textbf{MEASUREMENT METHOD:} \ \textbf{AC-coupled}, \ \textbf{True RMS}.$

Range	3 A	1 A	100 mA	10 mA	1 mA
Shunt Resistance guaranteed by design	0.05 Ω	0.05 Ω	1.0 Ω	10 Ω	100 Ω
Burden Voltage Rear Panel	<1.75 V rms	<0.55 V rms	<0.4 V rms	<150 mV rms	<125 mV rms
Burden Voltage 3721 Card	<2.4 V rms	<1.0 V rms	<0.6 V rms	<200 mV rms	<130 mV rms

INPUT PROTECTION: 3A, 250V fuse.

FREQUENCY AND PERIOD

MEASUREMENT METHOD: Reciprocal Counting technique. **GATE TIME:** dmm.aperture=0.273→0.01. Default 0.01s.

AC GENERAL

AC CMRR6: 70dB

VOLT-HERTZ PRODUCT: $\le 8 \times 10^7 \text{ Volt-Hz}$ (guaranteed by design), $\le 2.1 \times 10^7 \text{ Volt-Hz}$ verified. Input frequency verified for $\le 3 \times 10^5 \text{ Hz}$.

AC NOTES

- 20% overrange on AC functions except 1% on 300V and 3.33% on 3A. Default resolution is 5½ digits, maximum useable resolution is 6½ with 7½ digits programmable.
- Specification are for Detector Bandwidth 3 and sinewave inputs >5% of range. Detector Bandwidth 3 and 30
 are multi-sample A/D conversions. Detector bandwidth 300 is a single A/D conversion, programmable from
 0.0005PLC to 15PLC. Default condition set to 1PLC.
- Applies to 0°-18°C and 28°-50°C.
- Specified for square wave inputs. Input signal must be >10% of ACV range. If input is <20mV on the 100mV range then the frequency must be >10Hz. For sinewave inputs, frequency must be >100Hz.
- 5. Applies to non-sinewave inputs 5Hz->10kHz, and DC content ≤3% of range.
- 6. For $1k\Omega$ unbalance in LO lead.
- For Model 3721, 1mA ACI, add 0.05% to "of reading" uncertainty from 250Hz → 10kHz.
- Shunt resistance guaranteed by design.
- 9. Reading rates are for 60Hz (50Hz) operation using factory defaults operating conditions dmm.reset("all"), Autorange off, dmm.autodelay=dmm.OFF, dmm.opendetector=dmm.OFF, format.data_=format.SREAL. Ranges as follows: DCV = 10V, ZWQ/4WQ = 1kQ, DCI = IMA, DTy-Ckt Ω = 10Q, ACI = IMA, and ACV = IV. For Dry-Ckt Ω with Offset Comp OFF 2kQ, 60 rdg/s max. Dry-Ckt Ω with Offset Comp ON 2kQ, 29.5 rdg/s max. For temperature reading rates use DCV for T/C and ZWQ for Thermistor. Speeds are typical and include measurements and data transfer out the Ethernet, GPIB, or USB.
- 10. DMM configured for single reading, dmm.measurecount=1, and print(dmm.measure()). May require additional settling delays for full accuracy, depending on measurement configuration.
- 11. DMM configured for multisample readings and single buffer transfer, dmm.measurecount=1000, buf=dmm.makebuffer(1000), dmm.measure(buf), and printbuffer(1,1000,buf).

System Switch/Multimeter and Plug-In Cards

GENERAL

EXPANSION SLOTS: 6.

POWER LINE: Universal, 100V to 240V.

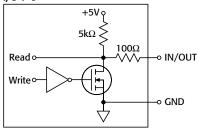
LINE FREQUENCY: 50Hz and 60Hz, automatically sensed at power-up.

POWER CONSUMPTION: 28VA with DMM and display, up to 140VA with six 37xx cards.

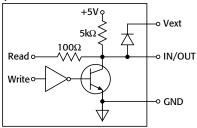
REAL TIME CLOCK: Battery backed, 10 years typical life.

EMC: Conforms to European Union EMC Directive.

SAFETY: Conforms to European Union Low Voltage Directive.


VIBRATION: MIL-PRF-28800F Class 3, Random.

WARM-UP: 2 hours to rated accuracy.


DIGITAL I/O: 25-pin female D-shell.

	I/O 1-9	I/O 10-14	Vext
I _{SINK} , max.	5 mA	250 mA	_
Absolute V _{IN}	5.25 V to -0.25 V	5.25 V to -0.25 V	5 V to 33 V
V _{IH} min	2.2 V	2.2 V	_
V _{IL} max	0.7 V	0.7 V	_
V _{OL} max at 5mA I _{sink}	0.7 V	0.7 V	_
V _{OL} max at I _{sink} max	_	2.3 V	_
V _{OH} min, 0.4mA source	2.7 V	2.4 V	_
Min V _{IN} pulse	$2 \mu s$	$10 \mu s$	_
Min V _o pulse	$1 \mu s$	50 μs	_

I/O 1-9

I/O 10-14

TRIGGERING AND MEMORY:

Window Filter Sensitivity: 0.01%, 0.1%, 1%, 10%, or full-scale of range (none).

Trigger Delay: 0 to 99 hrs. (10µs step size).

External Trigger Delay: <10 us.

Memory: Up to 650,000 time-stamped readings with Web page disabled. Additional memory available with external "thumb drive."

Non-volatile Memory: Single user save setup, with up to 75 DMM configurations and ≥600 channel patterns (dependent on name length, DMM function and configuration, and pattern image size). Additional memory available with external "thumb drive."

MATH FUNCTIONS: Rel, dB, Limit Test, %, 1/x, and mX+b with user defined displayed. REMOTE INTERFACE:

Ethernet: RJ-45 connector, LXI Class B Version 2, 10/100BT, no auto MDIX.

GPIB: IEEE-488.1 compliant. Supports IEEE-488.2 common commands and status model topology

USB Device (rear panel, type B): Full speed, USBTMC compliant.

USB Host (front panel, type A): USB 2.0, support for thumb drives.

LXI COMPLIANCE: LXI Class B Version 2 with IEEE 1588 precision time protocol.

LXI TIMING (applies to scanning) and SPECIFICATION:

Receive LAN[0-7] Event Delay: n/s (not specified) min., 800µs typ., n/s max.

Alarm to Trigger Delay: 25µs min., 50µs typ., n/s max.

Generate LAN[0–7] Event: n/s min., 800μ s typ., n/s max. (minimums are probabilistic and represent a 95% confidence factor).

Clock Accuracy: 25ppm.

Synchronization Accuracy: <150ns (probabilistic and represents a 95% confidence factor).

Timestamp Accuracy: 100μ s. Timestamp Resolution: 20ns.

LANGUAGE: Embedded Test Script Processor (TSP) accessible from any host interface.

Responds to individual Instrument Control Library (ICL) commands. Responds to high-speed test scripts comprised of ICL commands and Test Script Language (TSL) statements (e.g., branching, looping, math, etc.). Able to execute high-speed test scripts stored in memory without host intervention.

IP CONFIGURATION: Static or DHCP.

PASSWORD PROTECTION: 11 characters

MINIMUM PC HARDWARE: Intel Pentium 3, 800MHz, 512Mbyte RAM, 210Mbyte disk space or better.

OPERATING SYSTEMS/SOFTWARE: Windows® 2000 and XP compatible, supports Web browsers with Java plug-in (requires Java plug-in 1.6 or higher). Web pages served by 3706A.

OPERATING ENVIRONMENT: Specified for 0° to 50°C, ≤80%RH at 35°C, altitude up to 2000 meters

STORAGE ENVIRONMENT: -40° to 70°C.

DIMENSIONS:

Rack Mounted: 89mm high \times 483mm wide \times 457mm deep (3.5 in. \times 19 in. \times 18 in.).

Bench Configuration (includes handle and feet): 104mm high \times 483mm wide \times 457mm deep (4.125 in. \times 19 in. \times 18 in.)

SHIPPING WEIGHT: 13kg (28 lbs).

Distributed By:
Signal Test, Inc
1529 Santiago Ridge Way
San Diego, CA 92154
Tel. 1-619-575-1577 USA
www.SignalTestInc.com
Sales@SignalTestInc.com

