Use the PB-505 to construct a wide variety of experiments, including but not limited to:

Opto-Device Circuits
Clocks
Multivibrators
Oscillator Circuits
Timers
Function Generator Circuits
Logic Circuits
Gates
Counters
Flip-Flops
Analog-to-Digital
Converters
Digital-to-Analog
Converters
Medium Scale Integration Circuits

Phase Lock Loops
Operational Amplifier

PB-505 Advanced Analog \& Digital Design Workstation

Features:

Ideal for analog, digital and microprocessor circuits
Includes built-in Function Generator with continuously variable waveforms

Triple output power supply for a variety of DC voltage levels
Two Digital Pulsers for logic test circuits
High \& low buffered logic indicators
Logic Probe
AC Output
2 BCD to LED display circuits
8 channel logic monitor
Audio experimentation speaker
Removable breadboard plate allows the flexibility of building circuits away from the lab
Analog \& Digital optional courseware available
Input Power Source, AC Line: Switchable between 110-120VAC @ 60Hz \& 210-220VAC @ 50Hz
3 -year warranty on all parts and workmanship.

Global Specialties Model PB-505 is an Advanced Analog \& Digital Design Workstation. The PB-505's robust design makes it a trainer suitable for all levels of electronics instruction and design.

The PB-505's breadboarding area is comprised of Global's "Premium" solderless breadboards and is backed by an industry leading 3-year warranty.

The PB-505 can be used to construct basic series and parallel circuits up to the most complicated multi-stage microcomputer circuits, incorporating the latest in industrial technology.

The PB-505 allows students to learn valuable hands-on lab experience by employing necessary breadboarding techniques, which provide a solid foundation in circuit experimentation, analyzing and troubleshooting.

Experienced designers will also find the PB-505 an invaluable, capable and reliable instrument, suitable for the most advanced and demanding design applications.

Global Specialties trainers provide the most complete platform required to enable engineers and technicians to train for careers in the rapidly growing field of electronics technology.

Advanced

 Analog \& DigitalDesign Workstation

Specifications

Model	
PB-505	
Input power Source	Input Power Source, AC Line: Switchable between 110-120VAC @ 60Hz \& 210-220VAC @ 50 Hz
Power Supplies	Fixed DC: +5VDC 1.0A max, current limited Ripple, $<5 \mathrm{mV}$ Variable + DC: +1.3V @150mA to +15VDC @ 500 mA , Ripple $<5 \mathrm{mV}$ Variable - DC: -1.3VDC @ 150mA to -15VDC @ 500 mA , Ripple $<5 \mathrm{mV}$
Binding Posts	(4) Ground, +5 VDC, Variable + DC \& Variable DC Power Supply Outputs
Pulsers	(2) Pushbutton-operated, open-collector output pulsers. Each with 1 normally-open, 1 normallyclosed output. Each output sinks up to 250 mA
Logic Probe	Detects Logic High, Logic Low and Single Shot events. Logic High: 2.2V (nominal) in TTL mode, 70% of Vcc in CMOS mode. Logic Low: 0.8 V in TTL mode, 30% of Vcc in CMOS mode. Memory Mode: Detects single shot events and holds indication until Pulse/Mem switch is toggled
Function Generator	Frequency Range: 0.1 Hz to 100 KHz , six ranges Output Voltage: 0 to $\pm 10 \mathrm{Vp}$-p into 50Ω Load (20Vp-p in open circuit), short circuit protected Output Impedance: 600Ω except TTL Output waveforms: Sine, Square, Triangle \& TTL Sine Wave Distortion: <3\% @ 1Khz Typical TTL Pulse: Rise \& fall time: <25ns, drive 10 TTL Loads (TTL available when function generator is set to Square Wave Mode) Square Wave: Rise and fall times $<0.5 \mu \mathrm{~s}$
Logic Switches	(8) Logic Switches select Logic High and Logic Low Logic Low Level: Ground Logic High Level: Switchable between +5 V and the variable positive power supplies.
Switches	(2) Single Pull Double Throw (SPDT) uncommitted
Logic Indicators	LEDs: 16 LEDs; (8) red to indicate logic high and (8) green to indicate logic low Logic High Threshold: 2.2 V (nominal) in TTL/+5V mode, 70% (nominal) of selected operating voltage in CMOS mode Logic Low Threshold: 0.8 V (nominal) in TTL/+5V mode, 30% (nominal) of selected operating voltage in CMOS mode
Connectors	2 ea BNC - uncommitted
Potentiometers	2: $1 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ - uncommitted
Speaker	$8 \Omega, 0.25 \mathrm{~W}$ - uncommitted
Displays	(2) BCD to 7 Segment Display Circuits include (20 red LEDs and decoder/driver circuitry
Breadboards	Removable Plexiglas Socket Plate (PB-3) with 2520 Tie points with 200 additional buss strip tie points internally connected to power supply outputs and ground
Weight	$10 \mathrm{lbs}(4.6 \mathrm{~kg}$)
Dimensions	$6.5 \times 19 \times 11.5$ " ($165 \times 482 \times 292 \mathrm{~mm}$)

Technical data subject to change without notice.

Specialties
Innovative Training Solutions
www.globalspecialties.com

Optional Accessories

Courseware: Available separately or as a package (Model PB-505 Lab).
WK-1: Jumper Wire Kit, 350 pieces
WK-2: Jumper Wire Kit, 140 pieces
WK-3: Jumper Wire Kit, 70 pieces
WK-4: Wire Jumper Kit, 100 wires with machined tips
GSPA Series: Prototyping adapters
GSPA-K1: Surface mount to DIP adapter kit, 6 adapter boards
GSPA-K2: Surface mount to DIP adapter kit, 11 adapter boards
GSA-3185: Minipro Test Clip Set
PRO-50A: Digital Multimeter
The PB-505 Lab package offers comprehensive course instruction covering the following areas:

Electronic Fundamentals

Fundamentals of Electricity
Ohm's Law
Series Circuits, Parallel Circuits
Combinational Circuits
Current Control
Closed, open, shorts
Switches
Thevenin's Theorem
Wheatstone Bridge
Capacitors, Inductors
Phase Shift Circuits
Impedance
Resonant Circuits
Transformers
Rectifiers \& Filtering
Integrated Circuits
Transistor Amplifiers
Oscillators
Power Control Circuits

Digital Electronics

Number Systems \& Codes
Binary, Decimal, Hexadecimal, Octal \&
ASCII
Logic Gates \& Boolean Algebra
Combinational Logic Circuits
Flip-Flops
Digital Arithmetic
Counters \& Registers
Integrated Circuit Logic Families
TTL Logic
MOSFETS
CMOS
Interfacing CMOS \& TTL
Medium Scale Integration
Decoders
Encoders
Data Conversion \& Acquisition
Microcomputer Concepts

