Technical Data

KEITHLEY

Integra Series

Multimeter/Switch Systems

Introduction

The Integra Series of 612 -digit Multimeter/Switch systems blends Keithley's high performance DMM technology, switching expertise, and data acquisition knowledge into compact, affordable, easy-to-use packages. This technical data booklet provides a comprehensive overview of the systems and includes detailed specifications.
There are three Integra systems: the Model 2700,2701 , and 2750 . Each consists of a mainframe and a growing line of plug-in switch/control modules. The Model 2700 and 2701 each include two slots for the plug-in modules; the Model 2750 has five slots. Each slot can support a series of multiplexer, matrix, or control modules, and all the modules in a system operate simultaneously. Input modules can be mixed or matched to provide a broad range of measurement, acquisition, and control capabilities.
While the core functionality and programming of all Integra Series systems are identical, each mainframe has unique capabilities. For example, the Model 2701 is the only system to provide a 10/100BaseTX Ethernet interface, and the Model 2750 provides extended low ohms measurement capability.
Setting up an Integra system is simple and straightforward. When a plug-in module is inserted into a slot, it is ready to be used immediately. Settings can be configured from the front panel of the system or via the computer controller (over GPIB, RS-232, or Ethernet). Also, each channel can be configured independently.
If you have any questions after reviewing this information, please contact your local Keithley representative or call one of our Application Engineers at 1-800-552-1115 (U.S. only). Check Keithley's website, www.keithley.com, for the names and numbers of our representatives around the world.

Figure 1. Typical Integra Series System Diagram
MEASURE DCV Ohms

Temperature ACV
Frequency DC \& AC Current Totalizer

CONTROL
Analog Output
Digital I/O
Multiplex Switching
Independent Switching
Matrix Switching
RF Switching

Quick Comparison of Integra Systems

	Communication Bus	No. of Slots	Max. No. of Channels or Crosspoints	Battery-Backed Memory Buffer	Maximum Measurement Speed (readings/second on one channel)	Maximum Scanning Rate (channels/second)	Other
Model 2701	Ethernet, RS-232	2	80 channels or 96 crosspoints	450,000 readings	3500	500	Hardwired Ethernet interface good to 100 m from computer or network hub. Wireless Ethernet good for miles.
Model 2700	GPIB, RS-232	2	80 channels or 96 crosspoints	55,000 readings	2000	180	
Model 2750	GPIB, RS-232	5	200 channels or 240 crosspoints	110,000 readings	2500	230	Low ohms capabilities, $1 \mu \Omega$ sensitivity

Integra Series
 Multimeter/Switch Systems

Table of Contents

Overview4
Front and Rear Panel Views of Model 27005
Front and Rear Panel Views of Model 27016
Front and Rear Panel Views of Model 27504
Measurement Ranges7
Switch/Control Module Capabilities7
Module Capabilities Overview7
Module Selector Guide 8
Connector Guide for Keithley Integra Series Modules8
Channel Configuration Capabilities9
Scanning Capabilities 9
Choice of Communication Interfaces 10
Triggering and I/O Capabilities 11
Trigger Sources 11
Alarm Limits 12
Digital Outputs 12
Electrical Capabilities 12
On-board Data Storage 12
Saving/Recalling a Setup 13
Power Failure Recovery 13
Channel Monitor 13
Measurement Performance 13
Filtering 14
NPLC 14
Line Cycle Synchronization 14
Autozero 14
Low Ohms Measurement 14
Offset Compensation 15
Voltage Limit/Dry Circuit Ohms (DRYCKT) 15
Temperature Measurements 15
Calibration 16
Software 17
Integra Series Specifications 19
Switch/Control Module Specifications
7700 20-Channel Differential Multiplexer w/Automatic CJC 24
7701 32-Channel Differential Multiplexer 25
7702 40-Channel Differential Multiplexer 26
7703 32-Channel High Speed Differential Multiplexer 27
7705 40-Channel Control Module 28
7706 All-in-One I/O Module 29
7707 Multiplexer-Digital I/O Module 30
7708 40-Channel Differential Multiplexer Module 31
7709 6x8 Matrix Module 32
7710 20-Channel Solid State/Long Life Differential Multiplexer w/CJC 33
7711 2GHz 50 Ω RF Module 34
$77123.5 \mathrm{GHz} 50 \Omega$ RF Module 35
System Configuration Examples 36

Integra Series
 Multimeter/Switch Systems

Model 2700

> Use mX+b or \% scaling to convert sensor/transducer outputs directly into engineering units.

Measure the ratio or average of two input channels.

View a channel of interest without interrupting a scan by using the Channel Monitor feature.

Built-in linearization for thermocouples, RTDs, and thermistors.

Front panel input jacks simplify manual probing, troubleshooting, and calibration. Built-in signal conditioning with 1000 V isolation simplifies system configuration and ensures good measurements.

> Non-volatile memory allows time-stamped storage of 55k readings.

Familiar DMM-like front panel scheme makes it easier to use on bench or rack. Select or change functions with the simple push of a button.
stored in non-volatil memory.

Manually step through channels or scan automatically. Configure each channel independently.

Set the number of digits to be displayed as well as the reading rate.

Integra Series
 Multimeter/Switch Systems

Model 2701

Immediate alarm notification independent of the PC provided by built-in open-collector digital I/O lines for control, external triggering, and $\mathrm{HI} / \mathrm{LO}$ alarm/limit outputs.

A variety of measurement and control modules makes it simple to mix, match, and change input signals or control lines as needed. Get up to 80 differential channels and up to 500 channels per second scanning rate.

Integra Series
 Multimeter/Switch Systems

Model 2750

Integra Series
 Multimeter/Switch Systems

Measurement Ranges for the Integra Series Systems

Figure 2. Measurement Ranges

Switch/Control Module Capabilities

The flexibility to mix and match switch/control modules in a single mainframe simplifies configuring Integra Series-based systems for a wide range of applications. Each module offers a different combination of capabilities, such as number of channels, speed, etc. Before selecting a module, it is critical to analyze the needs of the application carefully and consider future requirements for expansion.

Module Capabilities Overview												
	7700	7701	7702	7703	7705	7706	7707	7708	7709	7710	7711	7712
DC Volts	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
DC Current	\checkmark		\checkmark									
Temperature												
T/C w/Automatic CJC	\checkmark					\checkmark		\checkmark		\checkmark		
T/C w/External CJC	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
RTD	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Thermistor	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Resistance (2- or 4-wire)	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Continuity	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
AC Volts	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
AC Current	\checkmark		\checkmark									
Frequency	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Event Counter/Totalizer						\checkmark						
Signal Routing/Control	\checkmark											
Digital Input							\checkmark					
Digital Output						\checkmark	\checkmark					
Analog Output						\checkmark						
RF Performance											\checkmark	\checkmark

Integra Series
 Multimeter/Switch Systems

Module Selector Guide

This selector guide may prove helpful in identifying the best module for a specific application. Install up to five modules at a time in the Model 2750 mainframe or two modules in the Model 2700 or 2701 mainframe.

Module	\# Analog Inputs	Configuration		Type of Connector	Max. Voltage	Max. Switched Current	Bandwidth	Contact Life	Switch Speed	Other
7700	20	Multiplexer w/CJC	$\begin{aligned} & 1 \times 20 \text { or } \\ & \text { two } 1 \times 10 \end{aligned}$	Screw terminals	300 V	1	50 MHz	10^{8}	3 ms	Maximum power $=125 \mathrm{VA}$. 2 current measure channels.
7701	32	Multiplexer	$\begin{gathered} 1 \times 32 \text { or } \\ \text { two } 1 \times 16 \\ \hline \end{gathered}$	D-sub	150 V	1 A	2 MHz	10^{8}	3 ms	Maximum power $=125 \mathrm{VA}$.
7702	40	Multiplexer	$\begin{gathered} 1 \times 40 \text { or } \\ \text { two } 1 \times 20 \end{gathered}$	Screw terminals	300 V	1 A	2 MHz	10^{8}	3 ms	Maximum power $=125 \mathrm{VA}$. 2 current measure channels.
7703	32	Multiplexer	$\begin{gathered} 1 \times 32 \text { or } \\ \text { two } 1 \times 16 \end{gathered}$	D-sub	300 V	500 mA	2 MHz	10^{8}	1 ms	Reed relays.
7705	40	$\begin{gathered} \text { Independent } \\ \text { SPST } \\ \hline \end{gathered}$	N/A	D-sub	300 V	2A	10 MHz	10^{8}	3 ms	Maximum power $=125 \mathrm{VA}$.
7706	20	Multiplexer w/CJC	$\begin{gathered} 1 \times 20 \text { or } \\ \text { two } 1 \times 10 \end{gathered}$	Screw terminals	300 V	1 A	2 MHz	10^{8}	3 ms	2 analog outputs. 16 digital outputs. Maximum power $=125 \mathrm{VA}$.
7707	10	Multiplexer/ Digital I/O	$\begin{aligned} & 1 \times 10 \text { or } \\ & \text { two } 1 \times 5 \end{aligned}$	D-sub	300 V	1 A	2 MHz	10^{8}	3 ms	$\begin{aligned} & 32 \text { digital I/O. } \\ & \text { Maximum power = } 125 \mathrm{VA} . \end{aligned}$
7708	40	$\begin{aligned} & \text { Multiplexer } \\ & \text { w/CJC } \\ & \hline \end{aligned}$	$\begin{gathered} 1 \times 40 \text { or } \\ \text { two } 1 \times 20 \\ \hline \end{gathered}$		300 V	1 A	2 MHz	10^{8}	3 ms	Maximum power $=125 \mathrm{VA}$.
7709	48	Matrix	6×8	D-sub	300 V	1 A	2 MHz	10^{8}	3 ms	Connects to internal DMM. Daisy chain multiple cards for up to a 6×40 matrix. Maximum power $=125 \mathrm{VA}$.
7710	20	Multiplexer w/CJC	$\begin{gathered} 1 \times 20 \text { or } \\ \text { two } 1 \times 10 \end{gathered}$	Removable screw terminals	60 V	0.1 A	2 MHz	10^{10}	0.5 ms	Solid state relays, 60 V max. 500 channels/second scan rate.
7711	8	Multiplexer	Dual 1×4	SMA	60 V	0.5 A	2 GHz	10^{6}	10 ms	Insertion loss <1.0dB @ 1GHz. VSWR <1.2 @ 1GHz.
7712	8	Multiplexer	Dual 1×4	SMA	42 V	0.5 A	3.5 GHz	10^{6}	10 ms	Insertion loss <1.1dB @ 2.4GHz.

* Can be disconnected from internal DMM for routing external signals

Connector Guide for Keithley Integra Series Modules

Module	Connector Type	Supplied Accessories	Available Accessories
7700	Oversized Screw Terminal	Strain Relief	7401 TC wire
7701	50 -pin female D-sub \& 25 -pin female D-sub	7789 connector kit	7790 connector kit, 7705-MTC-2 \& 7707-MTC-2 cables
7702	Oversized Screw Terminal	Strain Relief	-
7703	Two 50 -pin female D-sub	7788 connector kit	7705-MTC-2 cable
7705	Two 50 -pin female D-sub	7788 connector kit	7705-MTC-2 cable
7706	Screw Terminal	Strain Relief	7401 TC wire
7707	50 -pin male D-sub \& 25 -pin female D-sub	7790 connector kit	7789 connector kit, 7705-MTC-2 \& 7707-MTC-2 cables
7708	Oversized Screw Terminal	Strain Relief	7401 TC wire kit
7709	50 -pin female D-sub \& 25 -pin female D-sub	7790 connector kit	7789 connector kit, 7705-MTC-2 \& 7707-MTC-2 cables
7710	Quick Disconnect Screw Terminal	Strain Relief	7401 TC wire kit
7711	SMA	-	7711-BNC-SMA \& 7712-SMA-N adapters, 7712-SMA-1 \& S46-SMA-0.5,-1 SMA cables, 7051-2,-5,-10 BNC cables
7712	SMA	-	7712-SMA-N adapter, 7712-SMA-1 \& S46-SMA-0.5,-1 SMA cables

Multimeter/Switch Systems

Channel Configuration Capabilities

- Measurement functions: An Integra system can measure many different parameters: DC voltage, DC current, AC voltage, AC current, 2 -wire Ω, 4 -wire Ω, voltage clamped Ω (2750 only), temperature (using thermocouples, RTDs, and thermistors), frequency, period, and continuity.
- Math functions: A variety of math functions are available at the push of a button, including channel average and ratio, $m X+b$ scaling, min, max, average and standard deviation. All are available on a perchannel basis.
- Measurement setup: Each channel can be configured independently for making measurements. Selectable channel parameters include:

- Speed	- Individual "m" and "b" val-	- CJC type
- Range	ues in $m X+b$ format	- Thermistor type
- Resolution	- Channel averaging	- Thermocouple type
- Number of power line cycles	- Hi-Low limits	- RTD type
(NPLC)	Resistance measurement	- Voltage clamped ohms
- Math functions	method (2- or 4-wire)	(Dry Circuit, 2750 only)
- Ratio calculation	- Offset compensation	

- DUT-to-modules connections: It is easy to connect the device under test to the switch/control modules. The 7703 and 7705 modules use dual 50 -pin "D-sub" input connectors for secure, quick connections. The 7701,7707 , and 7709 modules use "D-sub" connectors that are compatible with off-the-shelf standard ribbon cable. These connectors are especially convenient for rapid system setup. When greater connection flexibility is required, the 7700,7702 , and 7708 modules provide oversize screw terminal connectors that simplify setup by eliminating the need to handle small connectors. The standard wires used are 20AWG. Model 7710 uses removable terminal blocks to provide the simplicity of screw terminal connections with the speed of mass terminated cables. The 7711 and 7712 RF modules use industry standard SMA connectors.
- Mainframe-to-modules connection: Secure screws connect the modules to the mainframe. At power-up, the mainframe detects any attached modules automatically, which minimizes set-up time. All signals are routed internally from module to mainframe.
- Front/rear switch: The front inputs are used for manual probing, troubleshooting, and calibration. A switch on the front panel makes it easy to shift between the front and rear inputs. This eases setting up the equipment and speeds verifying proper setup and connections prior to automating the measurement.

Scanning Capabilities

- Relay Closure Counts: Relay closure counts are logged every time a channel is closed. These counts are permanently written to the EEPROM on the module at a user-settable time interval (factory default of 10 minutes) or whenever the counts are queried. Valid intervals (set in integer number of minutes) are between 1 and 1440 minutes (24 hours). Relay closures are counted when a relay cycles from open to closed state.
- Open Sense Lead Indication. The system can alert the user if there is a sense lead disconnection on any channel. In this case, the front panel display will show "OVERFLOW." Therefore, the system does not need other equipment or calibration to inspect the broken connection or failed relay on the scanner card. In addition, the system will protect against erroneously passed conditions.
- Scan count: An Integra Series system can be programmed to run a given number of scans (up to $450,000)$ automatically and to record readings into the internal memory buffer. The instrument also allows programming the trigger source used to initiate each scan. (Refer to page 11 for more information on triggering.)

Integra Series

Integra Series

Multimeter/Switch Systems

Triggering and I/O Capabilities

Trigger sources

Any of the following sources can be used for triggering a reading or scan sequence:
A. Immediate: An Integra Series system self-triggers automatically. This default method is the simplest way to take a measurement on a single channel.
B. An external trigger is received via the Trigger Link connector. Triggering through Trigger Link is very precise ($<0.5 \mathrm{~ms}$ trigger latency) and provides tight timing control for synchronization in larger systems. Therefore, measurements can be taken at a precise time with very little uncertainty. This capability can be valuable when optimizing coordination with other system instruments, such as the Model 2400 SourceMeter ${ }^{\circledR}$ instrument in larger rack \& stack applications.
C. A bus trigger is received (GET or *TRG) on GPIB or *TRG on RS-232 and Ethernet.
D. Manual: Use of front panel TRIG key.
E. Analog trigger: A display reading on a particular channel can be programmed as an analog trigger. A scan sequence is started whenever such a reading is reached [programmed for either a greater than $(>)$ or less than $(<)$ condition as a trigger]. In other words, this feature can be used to initiate a scan sequence based on some external factor, such as a temperature rising above a pre-set limit. After scanning all the configured channels on the instrument, the instrument then returns to the channel that acted as the analog trigger, and checks for the reading to be in conditional limits. Depending on the limits and current reading, the instrument decides whether to start the next scan. Only the data of interest are acquired, eliminating the need to spend hours searching through reams of normal readings to find anomalous data.
F. Digital trigger: Two digital inputs (TTL-level) are standard on each mainframe-one to serve as a trigger input and one to serve as a hardware interlock. The digital trigger is logical "and"ed with the interlock. The interlock is default true. Therefore, the digital trigger input would be recognized for triggering only when the digital trigger and the interlock are both true. Thus, the interlock provides the user with a controlling mechanism for recognizing the digital trigger if necessary (see Figure 3).

Figure 3
Hardware
Interlock
Trigger
Event

Integra Series
 Multimeter/Switch Systems

Alarm Limits/Digital Outputs

The digital output lines can trigger external alarms without the need for a PC connection. The instrument can be programmed to provide alarms when any pre-set limits are breached. Limits can be applied to all measurement functions except continuity, which has its own alarm beeper. The limit test is performed after " $\mathrm{mX}+\mathrm{b}$ " and math operations.
Limit types: Each channel has four independently programmable limits, each of which can be assigned a value. These are:

1. Limit1 High (for example, 1% higher than the expected reading)
2. Limit1 Low (for example, 1% less than the expected reading)
3. Limit2 High (for example, 5\% higher than the expected reading)

Figure 4. Structure of the 9-Pin Male Digital I/O Connector
4. Limit2 Low (for example, 5% less than the expected reading)

The outputs can be positive or negative true, pulse, or fixed level. Pulse widths are programmable.

Master Limit: In addition to these limit alarms, a master limit is provided. It is logically "or"-ed with the four limits and is active every time any of the other limits are breached.

Each of the alarm limits and the master alarm is mapped to a specific output pin on the 9-pin male connector that handles the output of that alarm limit.

Electrical Capabilities:

- 250 mA sink (output).
- TTL level outputs (no external supply is needed).
- Open collector output up to 33 V with external supply.
- Ability to trigger or start a scan by connecting to one of the digital input lines.

On-board Data Storage

Buffer: There are non-volatile "read and transmit" memory buffers (in other words, the buffer can be emptied while it is being filled) in each system. The buffer can be configured in "wrap around" mode for recording readings continuously for long periods. There is no need to stop taking data, reset the instrument, or change memory cards. The wrap around memory can be configured to issue a Service Request (SRQ) at predetermined points in the scan. An SRQ can be issued when the buffer is one-quarter full, one-half full, three-quarters full, or completely full. The instrument can be commanded to download the readings without interfering with the current acquisition; therefore, data acquisition and retrieval can occur simultaneously. When the buffer is full, the instrument returns to the beginning of the buffer and starts writing in the locations emptied by the previous download.

Timestamp: The readings in the memory can be timestamped to trace the progress of a test. The time can be configured as either:

- Real time: The actual calendar day and time.
- Relative Time: Time is relative to the first reading stored in the buffer.

Integra Series

Multimeter/Switch Systems

Multimeter/Switch Systems

Digital Filtering

For each major measurement function, users can employ either averaging or advanced digital filtering to reduce noise and increase the effective resolution.

Averaging Filter

The averaging filter operates over a range of from two to 100 readings. All readings included in the filter range are weighted equally. A step input of any size will ramp up linearly to the final value after obtaining the number of readings specified by the user. The averaging filter may be configured as either a moving averaging or as a repeat filter. Operation over the GPIB bus is often done in "repeat" mode to ensure that all readings are fully filtered. Also, taking filtered measurements in repeat mode requires only one trigger, simplifying programming. Only the repeat filter can be used while scanning.

Advanced Filter

When a DMM is used in bench mode, it's often desirable for it to respond immediately upon connection to a test point, without the slow response associated with an averaging filter. The advanced filter addresses this need by providing a filter reset level. If the measured value deviates significantly from previous values, the filter is reset to the new value, and filtering is restarted. In this way, the user can set the filter reset level just above the maximum noise level anticipated and the multimeter will respond to new values immediately.

NPLC

Selectable power line cycle integration allows the user to specify the number of power line cycles (NPLC) over which to integrate ($1,5,10$, etc.). Use of line cycle integration provides rejection of noise from line cycle interference, the most common source of noisy readings. In general, the longer the integration time chosen, the greater the noise rejection will be. The system can also be set to less than 1 NPLC integration time, as fast as $0.002 \mathrm{NPLC}(\sim 33 \mu \mathrm{~s}$ at 60 Hz$)$ in the Model 2701 and $0.01 \mathrm{NPLC}(\sim 167 \mu \mathrm{~s}$ at 60 Hz$)$ in the Model 2700 and 2750 for faster data measurement (but without power line noise rejection).

Figure 7

Line Cycle Synchronization

To attain the highest possible line cycle noise rejection, it is important to trigger the reading at the beginning of a power line cycle. The system can be set to start a measurement precisely when the power line signal crosses zero (see Figure 7). This function increases the normal mode noise rejection 30 dB , providing an additional $\times 30$ reduction in noise due to line cycle interference.

Autozero

Internal autozeroing is used to maintain the best measurement performance. The advanced firmware design does the required calculation, such as CJC compensation for thermocouple measurements with the $7700,7706,7708$, and 7710 , automatically in the background. This enables the Integra system to provide faster reading rates (competitive products spend half their measurement time validating their own zero). Autozero can be disabled to increase measurement speed, but this may result in greater measurement uncertainty.

Low Ohms Measurement (Model 2750 only)

The Model 2750 can measure low ohms on all of its switch/control modules that have multiplexers or matrix configurations. The four-wire ohms measurement supports low ohms measurements down to the 1Ω range, with micro-ohm resolution. Measurements can be accommodated through ribbon cable or discrete wiring. On four-wire ohms measurements, up to five additional ohms of cable/switch card resistance can be tolerated per cable lead. This allows the use of ribbon cable without overloading the range.

Integra Series

Multimeter/Switch Systems

Offset Compensation

For more accurate low resistance measurements, all Integra systems provide the offset compensation mode to eliminate errors from the thermoelectric EMF effects ($V_{\text {EMF }}$). During the measurement cycle, the built-in ohms current source is turned off, then turned on again, and the resulting EMF error is automatically subtracted. This technique is typically used when measuring values less than 100Ω using the fourwire ohms method.

Voltage Limit/Dry Circuit Ohms (Model 2750 only)

The use of dry circuit mode, when selected, limits the open-circuit voltage to 20 mV . This allows resistance measurements to be made with low power. When measuring contact and connector resistances, it is important not to puncture oxides and films that may have formed. Standard resistance measurements have open-circuit voltage levels from 5.4 V to 12.8 V , depending on the selected range.

Dry circuit ohms can be used on the $1 \Omega, 10 \Omega, 100 \Omega$, and $1 \mathrm{k} \Omega$ ranges for the four-wire ohms $(\Omega 4)$ function. Also, offset compensated ohms (OCOMP) can be used with dry circuit ohms to cancel the effect of thermoelectric EMFs.

Dry circuit ohms should be used for any device that could be damaged by high open-circuit voltage. If not sure, and the slightly degraded accuracy is not a consideration, it is good practice to use dry circuit ohms to measure low resistance.

The accuracy specifications for all dry circuit ohms ranges are with offset compensated ohms and line synchronization enabled.

Temperature Measurements

The Integra systems support three major types of temperature sensors with built-in signal conditioning and linearization: thermocouples, RTDs, and thermistors.

	Thermocouples	RTDs	Thermistors
Temperature Range	$-200 \sim 1820^{\circ} \mathrm{C}$	$-200 \sim 630^{\circ} \mathrm{C}$	$-80 \sim 150^{\circ} \mathrm{C}$
Advantage	- Self-powered	• High stability	- Interchangeability
	- Wide temperature	• High accuracy	• No CJC required
	range	- No CJC required	- High accuracy over limited temperature range
Cost	Low	High	Medium

The Integra systems provide built-in algorithms for a variety of thermocouples, RTDs, and thermistors. To begin using a sensor, simply hook it up and the system does the rest.

- Thermocouples: Type J, K, N, T, E, R, S, B
- RTDs: D100, F100, PT100, PT385, PT3916, or user type
- Thermistors: $2250 \Omega, 5 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$

Integra Series

Multimeter/Switch Systems

Cold Junction Compensation Methods

Thermocouple measurements always require that the temperature be known at the point where the thermocouple is connected to the instrument. This connection point is known as the "cold junction." The Integra systems support three different methods for including this "cold-junction" temperature in the temperature measurements.

Automatic CJC

The CJC sensors are mounted on the multiplexer module's PC board (7700, 7706, 7708, and 7710). They sense the actual temperature across the module's connector, then compensate all temperature measurements accordingly. The CJC scaling is done automatically when autozero is turned on, so the user does not have to acquire it separately. When autozero is turned off, the instrument is optimized for speed and does not refresh the CJC compensation. This allows the user to obtain faster scan rates for short periods of time while ambient temperature remains stable.

External CJC

A thermistor or RTD is attached to Channel 1 by the end user. This thermistor or RTD is then used to measure the temperature of the point(s) where the thermocouples are connected to the instrument or to copper wires leading to the instrument. The precision of the actual temperature measurement depends on the accuracy of the cold junction reading and how close the sensor is to the actual temperature of the connection.

Simulated CJC

When the "change" in temperature is of interest rather than the absolute temperature value, the user can enter a parameter as a cold junction reference point (for example, $23^{\circ} \mathrm{C}$ for room temperature). This parameter will be used to adjust the actual temperature measurement for each channel. This simulated temperature must be updated manually if ambient conditions change. This is also the method used when an actual ice bath is used to establish a cold junction of $0^{\circ} \mathrm{C}$. The simulated parameter is then set to $0^{\circ} \mathrm{C}$ or $32^{\circ} \mathrm{F}$.

Open Thermocouple Detect

A system can alert the user if any thermocouple becomes broken or otherwise disconnected from the input terminal blocks. When the Open T/C Detect feature is enabled, the system will perform (in the background) a two-wire resistance measurement across each thermocouple input channel. If an open connection is detected, the front panel display will show "OVERFLOW" for that channel.

Calibration

The design of the Integra Series and their calibration procedure were developed to address a variety of critical calibration issues. For example, the systems have front panel input jacks, so there's no need to disassemble the system for periodic recalibrations. There's also no need to buy, stock, and track spare "cal only" modules. The systems are connected to the calibrator through the front panel input jacks. The systems' calibration procedure covers both verification and adjustment and can be performed through either the front panel or any of the remote interfaces. The calibration interval is user-selectable.

Start-Up Software

Free built-In Web diagnostic tool (2701 only)

To start communicating with the Integra Series instrument, simply connect the 2701 to a PC Ethernet port using the supplied RJ-45 crossover cable, start Microsoft ${ }^{\circledR}$ Internet Explorer ${ }^{\circledR}$ version 5.0 or later, and type the instrument's IP address into the URL line. The built-in web diagnostic interface allows for easy communication and debugging, without the need to install external software. This interface makes it easy to read and set network parameters such as IP address, subnet mask, gateway, MAC address, calibration dates, and other data stored in the Integra Series instrument. It also takes readings from the instrument and allows the user to send command strings and receive data.

Free customizable start-up software

This free TestPoint runtime offers basic datalogging capabilities that can get a system "up \& running" almost immediately. With just a few clicks of the mouse, this software can confirm the system's hardware, wiring, communications, and software drivers are installed and operating correctly. It can
 also configure instrument functions and perform simple data acquisition tasks. Data from multiple channels can be saved to disk and up to eight channels of data can be graphed automatically. If the application demands greater functionality, this runtime can be modified with the TestPoint application development package.

TestPoint ${ }^{\text {TM }}$ Application Development Package

If Keithley's free start-up software doesn't provide a feature needed to support a specific application, the economical TestPoint application development package makes it simple to create a semi-custom solution by modifying the runtime application. By using the start-up runtime as a foundation, TestPoint offers the flexibility needed to build basic systems quickly, without in-depth programming. TestPoint uses object-oriented, drag-and-drop technology to bring both power and simplicity to data acquisition and test and measurement applications. TestWizards and pre-written application templates in a choice of graphical styles make it simple to create a complete application with a few mouse clicks. Additional objects can be modified and added to create custom enhancements.
Three optional toolkits make it easy to expand applications:

- Internet toolkit provides Web-based remote measurements and control.
- Database toolkit provides access to popular database packages like Access, SQL, Oracle, and others.
- Statistical process control (SPC) toolkit adds charts, statistics, and analysis capabilities.

Integra Series
 Multimeter/Switch Systems

Datalogging/Data Acquisition Software

ExceLINX-1A

For advanced datalogging tasks, this powerful and economical add-in utility for Microsoft ${ }^{\oplus}$ Excel makes it simple to acquire data from the Integra Series instrument directly into Excel, then employ Excel's graphic, charting, and analysis capabilities to turn that data into useful information. No programming is required-a few mouse clicks are all it takes to configure channels, set parameters, configure triggers, and scan lists. ExceLINX-1A can control up to three Integra Series instruments for up to 600 channels of data acquisition. Sold separately.

Custom Application Development with VISA Based IVI Driver

For building custom applications, programmers can take advantage of the VISA based Integra series IVI driver designed for use with software development environments like Visual Basic, Visual C/C++, LabVIEW, LabWindows/ CVI, and TestPoint. The VISA (Virtual Instrument Software Architecture) layer of the driver allows the programmer to quickly reconfigure the communication bus between the PC and the instruments without changing a single line of source code. This means that changing GPIB control board vendors or switching the communication bus between GPIB, RS-232, and Ethernet requires no rework of a custom application program. The IVI (Interchangeable Virtual Instrument) layer of the driver provides a simplified command interface that is common to the entire Integra Series product family. The driver also includes a large set of examples for reference during software design.

Integra Series
 Multimeter/Switch Systems

Specifications are subject to change without notice.
Download the latest specs from www.keithley.com.

Integra Series
 Multimeter/Switch Systems
 Mainframes

DC CHARACTERISTICS ${ }^{1}$
CONDITIONS: MED (1 PLC) ${ }^{2}$ or 10 PLC or MED (1 PLC) with Digital Filter of 10

FUNCTION	RANGE		RESOLUTION	$\begin{gathered} \text { TEST } \\ \text { CURRENT } \pm 5 \% \\ \text { OR BURDEN } \\ v \quad \text { VOLTAGE } \\ \hline \end{gathered}$	INPUT RESISTANCE OR OPEN CKT. VOLTAGE ${ }^{3}$		ACCURACY: \pm (ppm of reading + ppm of range) (ppm = parts per million) (e.g., 10ppm $=0$.			$\begin{gathered} \text { TEMPERATURE } \\ \text { COEFFICIENT } \\ 0^{\circ}-18^{\circ} \mathrm{C} \& 28^{\circ}-50^{\circ} \mathrm{C} \\ \hline \end{gathered}$	
			24 Hour ${ }^{4}$				90 Day	1 Year			
			2700/2701		2750	$23^{\circ} \mathrm{C} \pm 1^{\circ}$	$23^{\circ} \mathrm{C} \pm 5^{\circ}$	$23^{\circ} \mathrm{C} \pm 5^{\circ}$			
Voltage ${ }^{11}$	100.0000	mV		$0.1 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$	$>10 \mathrm{G} \Omega$	$15+30$	$25+35$	$30+35$	$(1+5){ }^{\circ} \mathrm{C}$
	1.000000	V		$1.0 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$	$>10 \mathrm{G} \Omega$	$15+6$	$25+7$	$30+7$	$(1+1){ }^{\circ} \mathrm{C}$
	10.00000	V	$10 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$	$>10 \mathrm{G} \Omega$	$10+4$	$20+5$	$30+5$	$(1+1){ }^{\circ} \mathrm{C}$	
	100.0000	V	$100 \mu \mathrm{~V}$		$10 \mathrm{M} \Omega \pm 1 \%$	$10 \mathrm{M} \Omega \pm 1 \%$	$15+6$	$35+9$	$45+9$	$(5+1){ }^{\circ} \mathrm{C}$	
	1000.000	V ${ }^{5}$	1 mV		$10 \mathrm{M} \Omega \pm 1 \%$	$10 \mathrm{M} \Omega \pm 1 \%$	$20+6$	$35+9$	$50+9$	$(5+1){ }^{\circ} \mathrm{C}$	
Resistance ${ }^{6,8}$	1.000000	Ω^{24}	$1 \mu \Omega$	10 mA		5.9 V	$80+40$	$80+40$	$100+40$	$(8+1){ }^{\circ} \mathrm{C}$	
	10.00000	Ω^{24}	$10 \mu \Omega$	10 mA		5.9 V	$20+20$	$80+20$	$100+20$	$(8+1){ }^{\circ} \mathrm{C}$	
	100.0000	Ω	$100 \mu \Omega$	1 mA	6.9 V	12.2 V	$20+20$	$80+20$	$100+20$	$(8+1){ }^{\circ} \mathrm{C}$	
	1.000000	k Ω	$1 \mathrm{~m} \Omega$	1 mA	6.9 V	12.2 V	$20+6$	$80+6$	$100+6$	$(8+1){ }^{\circ} \mathrm{C}$	
	10.00000	$\mathrm{k} \Omega$	$10 \mathrm{~m} \Omega$	$100 \mu \mathrm{~A}$	6.9 V	6.8 V	$20+6$	$80+6$	$100+6$	$(8+1){ }^{\circ} \mathrm{C}$	
	100.0000	$\mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}$	12.8 V	12.8 V	$20+6$	$80+10$	$100+10$	$(8+1){ }^{\circ} \mathrm{C}$	
	1.000000	$\mathrm{M} \Omega^{23}$	1.0)	$10 \mu \mathrm{~A}$	12.8 V	12.8 V	$20+6$	$80+10$	$100+10$	$(8+1){ }^{\circ} \mathrm{C}$	
	10.00000	$\mathrm{M} \Omega^{7,23}$	10Ω	$0.7 \mu \mathrm{~A} / / 10 \mathrm{M} \Omega$	7.0 V	7.0 V	$150+6$	$200+10$	$400+10$	$(70+1){ }^{\circ} \mathrm{C}$	
	100.0000	$\mathrm{M} \Omega{ }^{7,23}$	100Ω	$0.7 \mu \mathrm{~A} / / 10 \mathrm{M} \Omega$	7.0 V	7.0 V	$800+30$	$2000+30$	$2000+30$	$(385+1) /{ }^{\circ} \mathrm{C}$	
Dry Circuit	1.000000	Ω	$1 \mu \Omega$	10 mA		20 mV	$80+40$	$80+40$	$100+40$	$(8+1){ }^{\circ} \mathrm{C}$	
Resistance ${ }^{21,24}$	10.00000	Ω	$10 \mu \Omega$	1 mA		20 mV	$25+40$	$80+40$	$100+40$	$(8+1){ }^{\circ} \mathrm{C}$	
	100.0000	Ω	$100 \mu \Omega$	$100 \mu \mathrm{~A}$		20 mV	$25+40$	$90+40$	$140+40$	$(8+1){ }^{\circ} \mathrm{C}$	
	1.000000	$\mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}$		20 mV	$25+90$	$180+90$	$400+90$	$(8+1){ }^{\circ} \mathrm{C}$	
Continuity (2W)	1.000	$\mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	1 mA	6.9 V	12.2 V	$40+100$	$100+100$	$100+100$	$(8+1){ }^{\circ} \mathrm{C}$	
Current	20.00000	mA	10 nA	<0.2 V			$60+30$	$300+80$	$500+80$	$(50+5){ }^{\circ} \mathrm{C}$	
	100.0000	mA	100 nA	<0.1 V			$100+300$	$300+800$	$500+800$	$(50+50){ }^{\circ} \mathrm{C}$	
	1.000000	A	$1.0 \mu \mathrm{~A}$	$<0.5 \mathrm{~V}^{9}$			$200+30$	$500+80$	$800+80$	$(50+5) /{ }^{\circ} \mathrm{C}$	
	3.000000	A	$10 \mu \mathrm{~A}$	$<1.5 \mathrm{~V}^{9}$			$1000+15$	$1200+40$	$1200+40$	$(50+5) /{ }^{\circ} \mathrm{C}$	

Channel (Ratio) ${ }^{10}$
Ratio Accuracy $=$ Accuracy of selected Channel Range + Accuracy of Paired Channel Range
Channel (Average) ${ }^{10}$
Average Accuracy $=$ Accuracy of selected Channel Range + Accuracy of Paired Channel Range

TEMPERATURE ${ }^{19}$
(Displayed in ${ }^{\circ} \mathbf{C}$, ${ }^{\circ} \mathrm{F}$, or K . Exclusive of probe errors.)

4-Wire RTD:

(100 Ω platinum [PT100], D100, F100, PT385, PT3916, or user type. Offset compensation On)

-200° to	$630^{\circ} \mathrm{C}$	0.01	${ }^{\circ} \mathrm{C}$	$0.06^{\circ} \mathrm{C}$
Thermistor: $(2.2 \mathbf{k} \Omega, 5 \mathbf{k} \Omega \text {, and } 10 \mathrm{k} \Omega)^{20}$		$0.003^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$		
-80° to	$150^{\circ} \mathrm{C}$	0.01	${ }^{\circ} \mathrm{C}$	$0.08^{\circ} \mathrm{C}$

DC SYSTEM SPEEDS ${ }^{15,18}$

RANGE CHANGES (excludes $4 \mathrm{~W} \Omega)^{16}:$	$500 / 2750$	2701
FUNCTION CHANGES 16	$50 /(42 / \mathrm{s})$	$50 / \mathrm{s}(42 / \mathrm{s})$
AUTORANGE TIME $6:$	$50 /(42 / \mathrm{s})$	$50 / \mathrm{s}(42 / \mathrm{s})$
ASCII READINGS TO RS-232 (19.2k BAUD):	$<30 \mathrm{~ms}$	$<30 \mathrm{~ms}$
MAX. EXTERNAL TRIGGER RATE:	$55 / \mathrm{s}$	$300 / \mathrm{s}$
	$375 / \mathrm{s}$	$2000 / \mathrm{s}$

DC MEASUREMENT SPEEDS ${ }^{15}$
Single Channel, $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ Operation

FUNCTION	DIGITS	READINGS/s		PLCs
DCV, DCI, $\Omega(<\mathbf{1 0 M})$,	$6.5^{12,16}$	5	(4)	10
Thermocouple,	6.5^{16}	35	(28)	1
Thermistor	$6.5^{12,16}$	45	(36)	1
	$5.5^{21,16}$	150	(120)	0.1
	$5.5^{16,17}$	300	(240)	0.1
	5.5^{17}	500	(400)	0.1
2701 and 2750 only	4.5^{17}	2500	(2000)	0.01
2701 only	3.5	3500	(2800)	0.002
4W $\Omega(<\mathbf{1 0 M})$	6.5^{16}	1.4	(1.1)	10
	6.5^{16}	15	(12)	1
4W Ω OComp, RTD ${ }^{22}$	5.5^{17}	33	(25)	0.1
	6.5^{16}	0.9	(0.7)	10
	6.5^{16}	8	(6.4)	1
Channel (Ratio),	$5.5^{16,17}$	18	(14.4)	0.1
Channel (AVG)	6.5^{16}	2.5	(2)	10
	6.5^{16}	15	(12)	1

Multiple Channels, Into Memory ${ }^{18}$	Channels/s		
	2700	2701	2750
7710 Scanning DCV	$180 / \mathrm{s}$	$500 / \mathrm{s}$	$230 / \mathrm{s}$
7710 Scanning DCV with Limits or Time Stamp On	$170 / \mathrm{s}$	$500 / \mathrm{s}$	$230 / \mathrm{s}$
7710 Scanning DCV alternating 2W Ω	$45 / \mathrm{s}$	$115 / \mathrm{s}$	$60 / \mathrm{s}$
Multiple Channels, Into and Out of Memory to GPIB	16,18		
or Ethernet	Channels/s		
	2700	2701	2750
7702 Scanning DCV	$65 / \mathrm{s}$	$75 / \mathrm{s}$	$65 / \mathrm{s}$
7700 and 7708 Scanning Temperature (T/C)	$50 / \mathrm{s}$	$50 / \mathrm{s}$	$50 / \mathrm{s}$
7710 Scanning DCV	$145 / \mathrm{s}$	$440 / \mathrm{s}$	$210 / \mathrm{s}$
7710 Scanning DCV with Limits or Time Stamp On	$145 / \mathrm{s}$	$440 / \mathrm{s}$	$210 / \mathrm{s}$
7710 Scanning DCV alternating 2W Ω	$40 / \mathrm{s}$	$115 / \mathrm{s}$	$55 / \mathrm{s}$

DC SPEED vs. NOISE REJECTION

			RMS Noise					
10V Range								
Rate	Filter	Readings/s ${ }^{12}$	Digits	2700,2750	2701	NMRR $^{\prime}$	CMRR 14	
10	50	$0.1(0.08)$	6.5	$<1.2 \mu \mathrm{~V}$	$<2.5 \mu \mathrm{~V}$	$110 \mathrm{~dB}^{13}$	140 dB	
1	Off	$15(12)$	6.5	$<4 \mu \mathrm{~V}$	$<6 \mu \mathrm{~V}$	$90 \mathrm{~dB}^{13}$	140 dB	
0.1	Off	$500(400)$	5.5	$<22 \mu \mathrm{~V}$	$<40 \mu \mathrm{~V}$	-	80 dB	
0.01	Off	$2500(2000)$	4.5	$<150 \mu \mathrm{~V}$	$<300 \mu \mathrm{~V}$	-	80 dB	
0.002	Off	$3500(2800)$	3.5	-	$<1 \mathrm{mV}$	-	60 dB	

DC MEASUREMENT CHARACTERISTICS

DC VOLTS

A-D LINEARITY: 2.0 ppm of reading +1.0 ppm of range.
INPUT IMPEDANCE:
$100 \mathrm{mV}-10 \mathrm{~V}$ Ranges: Selectable $>10 \mathrm{G} \Omega / /$ with $<400 \mathrm{pF}$ or $10 \mathrm{M} \Omega \pm 1 \%$.
100V, 1000V Ranges: $10 \mathrm{M} \Omega \pm 1 \%$.
Dry Circuit: $100 \mathrm{k} \Omega \pm 1 \% / /<1 \mu \mathrm{~F}$.
EARTH ISOLATION: 500 V peak, $>10 \mathrm{G} \Omega$ and $<300 \mathrm{pF}$ any terminal to chassis.
INPUT BIAS CURRENT: <75 pA at $23^{\circ} \mathrm{C}$
COMMON MODE CURRENT: < 500 nApp at 50 Hz or 60 Hz .
AUTOZERO ERROR: Add $\pm(2 \mathrm{ppm}$ of range error $+5 \mu \mathrm{~V})$ for <10 minutes and $\pm 1^{\circ} \mathrm{C}$. INPUT PROTECTION: 1000 V , all ranges. 300 V with plug in modules.

RESISTANCE

MAXIMUM $4 W \Omega$ LEAD RESISTANCE: 80% of range per lead (Dry Ckt mode). 5Ω per lead for 1Ω range; 10% of range per lead for $10 \Omega, 100 \Omega$, and $1 \mathrm{k} \Omega$ ranges; $1 \mathrm{k} \Omega$ per lead for all other ranges.
OFFSET COMPENSATION: Selectable on $4 \mathrm{~W} \Omega, 1 \Omega, 10 \Omega, 100 \Omega, 1 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$ ranges.
CONTINUITY THRESHOLD: Adjustable 1 to 1000Ω
INPUT PROTECTION: 1000V, all Source Inputs, 350 V Sense Inputs. 300 V with plug-in modules.

DC CURRENT

SHUNT RESISTORS: $100 \mathrm{~mA}-3 \mathrm{~A}, 0.1 \Omega .20 \mathrm{~mA}, 5 \Omega$.
INPUT PROTECTION: 3A, 250V fuse.

THERMOCOUPLES

CONVERSION: ITS-90.
REFERENCE JUNCTION: Internal, External, or Simulated (Fixed).
OPEN CIRCUIT CHECK: Selectable per channel. Open $>11.4 \mathrm{k} \Omega \pm 200 \Omega$.

DC NOTES

1. 20% overrange except on 1000 V and 3 A .
2. Add the following to "ppm of range" uncertainty; 100 mV 15 ppm ; 1 V and 100 V 2 ppm ; for Model 27501Ω and Dry Circuit Ω $40 \mathrm{ppm} ; 10 \rightarrow 1 \mathrm{M} \Omega 2 \mathrm{ppm}$, for Models $2700 / 2701100 \Omega 30 \mathrm{ppm}, 20 \mathrm{~mA}$ and $1 \mathrm{~A} 10 \mathrm{ppm}, 100 \mathrm{~mA} 40 \mathrm{ppm}$.
3. $\pm 2 \%$ (measured with $10 \mathrm{M} \Omega$ input resistance $\mathrm{DMM},>10 \mathrm{G} \Omega$ DMM on $10 \mathrm{M} \Omega$ and $100 \mathrm{M} \Omega$ ranges). For Dry Circuit $\Omega, \pm 25 \%$ with $\pm 2 \%$ (measured with $10 \mathrm{M} \Omega$ input resistance DM, $>10 \mathrm{G} \Omega$ DMM on 10 H
4. Relative to calibration accuracy.
5. For signal levels $>500 \mathrm{~V}$, add $0.02 \mathrm{ppm} / \mathrm{V}$ uncertainty for portion exceeding 500 V .
6. Specifications are for 4 -wire $\Omega, 1 \Omega, 10 \Omega$, and 100Ω with offset compensation on. With 77 XX plug-in modules, LSYNC on. With off set compensation on, OPEN CKT. VOLTAGE is 12.8 V . For 2 -wire Ω add 1.5Ω to " ppm of range" uncertainty. 1Ω range is 4 -wire only. Must have 10% matching of lead resistance in Input HI and LO.
7. Add the following to "ppm of reading" uncertainty when using plug in modules:

	$10 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$	$10 \mathrm{M} \Omega$	$100 \mathrm{M} \Omega$
All Modules:				220 ppm	2200 ppm
$7701,7703,7707,7709$ Modules:	10 ppm	100 ppm	1000 ppm	1%	10%
$\mathbf{7 7 0 6 , 7 7 0 8 , 7 7 1 0 \text { Modules: }}$	5 ppm	50 ppm	500 ppm	5000 ppm	5%
7710 Module $\mathbf{2 3}{ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}:$	11 ppm	110 ppm	1100 ppm	1.1%	11%

9. Add 1.5 V when used with plug in modules.
10. For RATIO, DCV only. For AVERAGE, DCV and Thermocouples only. Available with plug in modules only.
11. Add $6 \mu \mathrm{~V}$ to "of range" uncertainty when using Models 7701,7703 , and 7707 , and $3 \mu \mathrm{~V}$ for Models 7706 and 7709
12. Auto zero off.
13. For LSYNC On, line frequency $\pm 0.1 \%$. For LSYNC Off, use 60 dB for ≥ 1 PLC.
14. For $1 \mathrm{k} \Omega$ unbalance in LO lead. AC CMRR is 70 dB
15. Speeds are for $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ operation using factory defaults operating conditions ($\left.{ }^{* R S T}\right)$. Autorange off, Display off, Limits off, Trigger delay $=0$.
16. Speeds include measurements and binary data transfer out the GPIB or ASCII data transfer for Ethernet and RS-232 (reading element only).
17. Sample count $=1000$, auto zero off (into memory buffer).
18. Auto zero off, NPLC $=0.01$ (Models 2700 and 2750), NPLC $=0.002($ Model 2701).
19. Additional Uncertainty:

Type	Range	Front Terminals Sim. Ref. Junction
J	-200° to $\quad 0^{\circ} \mathrm{C}$	0.1
K	-200° to $\quad 0^{\circ} \mathrm{C}$	0.2
N	-200° to $\quad 0^{\circ} \mathrm{C}$	0.3
T	-200° to $\quad 0^{\circ} \mathrm{C}$	0.2
E	-200° to $\quad 0^{\circ} \mathrm{C}$	-
R	0° to $+400^{\circ} \mathrm{C}$	0.4
S	0° to $+400^{\circ} \mathrm{C}$	0.4
B	$+350^{\circ}$ to $+1100^{\circ} \mathrm{C}$	0.8
Type	Range	7710 Using CJC
J	0° to $+760^{\circ} \mathrm{C}$	1.5
K	0° to $+1372{ }^{\circ} \mathrm{C}$	-
N	0° to $+1300^{\circ} \mathrm{C}$	0.5
T	0° to $+400^{\circ} \mathrm{C}$	0.5
E	0° to $+1000^{\circ} \mathrm{C}$	0.5
R	$+400^{\circ}$ to $+1768^{\circ} \mathrm{C}$	0.9
S	$+400^{\circ}$ to $+1768^{\circ} \mathrm{C}$	0.9
B	$+1100^{\circ}$ to $+1820^{\circ} \mathrm{C}$	0.9

20. For lead resistance $>0 \Omega$, add the following uncertainty $/ \Omega$ for measurement temperatures of:

		$70^{\circ}-100^{\circ} \mathrm{C}$	$100^{\circ}-150^{\circ} \mathrm{C}$
$\mathbf{2 . 2} \mathbf{~ k} \Omega$	(44004)	$0.22^{\circ} \mathrm{C}$	$1.11^{\circ} \mathrm{C}$
$\mathbf{5 . 0} \mathrm{k} \Omega$	(44007)	$0.10^{\circ} \mathrm{C}$	$0.46^{\circ} \mathrm{C}$
$\mathbf{1 0 ~ k} \Omega$	(44006)	$0.04^{\circ} \mathrm{C}$	$0.19^{\circ} \mathrm{C}$

21. For 4 -wire Ω only, offset compensation on, LSYNC on.
22. For Dry Circuit $1 \mathrm{k} \Omega$ range, 2 reading $/ \mathrm{s}$ max.
23. For 2750 Front Inputs, add the following to Temperature Coefficient "ppm of reading" uncertainty: $1 \mathrm{M} \Omega 25 \mathrm{ppm}, 10 \mathrm{M} \Omega 250 \mathrm{ppm}$ $100 \mathrm{M} \Omega 2500 \mathrm{ppm}$. Operating environment specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ and $50 \% \mathrm{RH}$ at $35^{\circ} \mathrm{C}$.
24. Model 2750 only.
25. Front panel resolution is limited to 0.1Ω.

Integra Series
 Multimeter/Switch Systems
 Mainframes

AC SPECIFICATIONS ${ }^{1}$

					$(3 \mathrm{~Hz}-500 \mathrm{kHz})(333 \mathrm{~ms}-2 \mu \mathrm{~s})$	
Frequency 4	100 mV	0.333	ppm	90 Day/1 Year	$100 \mathrm{ppm}+0.333 \mathrm{ppm}$ (SLOW, 1s gate)	
and Period	to	3.33	ppm		$100 \mathrm{ppm}+3.33 \mathrm{ppm}$ (MED, 100 ms gate)	
	750	V	33.3	ppm		$100 \mathrm{ppm}+33.3 \mathrm{ppm}$ (FAST, 10ms gate)

ADDITIONAL UNCERTAINTY \pm (\% OF READING)				
Low Frequency Uncertainty		MED		FAST
20 Hz - 30 Hz		0.3		-
$30 \mathrm{~Hz}-\quad 50 \mathrm{~Hz}$		0		-
$50 \mathrm{~Hz}-100 \mathrm{~Hz}$		0		1.0
$100 \mathrm{~Hz}-200 \mathrm{~Hz}$		0		0.18
$200 \mathrm{~Hz}-300 \mathrm{~Hz}$		0		0.10
$>300 \mathrm{~Hz}$		0		0
CREST FACTOR: ${ }^{5}$	1-2	2-3	3-4	4-5
Additional Uncertainty:	0.05	0.15	0.30	0.40
Max. Fundamental Freq.: Maximum Crest Factor: 5 at ful	50 kHz scale.	50kHz	3 kHz	1 kHz

AC MEASUREMENT CHARACTERISTICS

AC VOLTS

MEASUREMENT METHOD: AC-coupled, True RMS.
INPUT IMPEDANCE: $1 \mathrm{M} \Omega \pm 2 \% / /$ by $<100 \mathrm{pF}$.
INPUT PROTECTION: 1000 V p or 400 VDC . 300 V rms with plug in modules.

AC CURRENT

MEASUREMENT METHOD: AC-coupled, True RMS.
SHUNT RESISTANCE: 0.1Ω.
BURDEN VOLTAGE: $1 \mathrm{~A}<0.5 \mathrm{~V}$ rms, $3 \mathrm{~A}<1.5 \mathrm{~V}$ rms. Add 1.5 Vrms when used with plug in modules. INPUT PROTECTION: 3A, 250 V fuse.

FREQUENCY AND PERIOD

MEASUREMENT METHOD: Reciprocal counting technique.
GATE TIME: SLOW 1 s , MED 100 ms , and FAST 10 ms .

AC GENERAL

AC CMRR ${ }^{6}$: 70 dB .
VOLT HERTZ PRODUCT: $<=8 \times 10^{7}$.

AC MEASUREMENT SPEEDS ${ }^{7,13}$

Single Channel, $\mathbf{6 0 H z} \mathbf{(5 0 H z) ~ O p e r a t i o n ~}$				
Function	Digits	Readings/s	Rate	Bandwidth
ACV, ACI	6.5	2 s /Reading	SLOW	$3 \mathrm{~Hz}-300 \mathrm{kHz}$
	6.5	$4.8(4)$	MED	$30 \mathrm{~Hz}-300 \mathrm{kHz}$
	6.5^{9}	$40(32)$	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$
Frequency,	6.5	$1(1)$	SLOW	$3 \mathrm{~Hz}-300 \mathrm{kHz}$
Period	5.5	$9(9)$	MED	$30 \mathrm{~Hz}-300 \mathrm{kHz}$
	4.5	$35(35)$	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$
	4.5^{10}	$65(65)$	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$

Multiple Channel
7710 SCANNING ACV ${ }^{10,11}$: 500/s.
7710 SCANNING ACV WITH AUTO DELAY ON : $2 \mathrm{~s} /$ reading.
AC SYSTEM SPEEDS ${ }^{7,9,11}$

	$2700 / 2750$	2701
AC System Speed:	$(19.2 \mathrm{k})$	$(115.2 \mathrm{~K})$
Range Changes: ${ }^{12}$	$4 / \mathrm{s}(3 / \mathrm{s})$	$4 / \mathrm{s}(3 / \mathrm{s})$
Function Changes: ${ }^{12}$	$4 / \mathrm{s}(3 / \mathrm{s})$	$4 / \mathrm{s}(3 / \mathrm{s})$
Autorange Time:	$<3 \mathrm{~s}$	$<3 \mathrm{~s}$
ASCII Readings to RS-232 (19.2k baud):	$50 / \mathrm{s}$	$300 / \mathrm{s}$
Max. External Trigger Rate:	$250 / \mathrm{s}$	$2000 / \mathrm{s}$

AC NOTES

1.20% overrange except on 750 V and 3 A .
2. Specification are for SLOW mode and sine wave inputs $>5 \%$ of range. SLOW and MED are multi-sample AD conversions. FAST is DETector: BANDwidth 300 with nPLC $=1.0$.
3. Applies to $0^{\circ}-18^{\circ} \mathrm{C}$ and $28^{\circ}-50^{\circ} \mathrm{C}$.
4. For square wave inputs $>10 \%$ of ACV range, except 100 mV range. 100 mV range frequency must be $>10 \mathrm{~Hz}$ if input is $<20 \mathrm{mV}$.
5. Applies to non-sine waves $>5 \mathrm{~Hz}$.
6. For $1 \mathrm{k} \Omega$ unbalance in LO lead.
7. Speeds are for $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ operation using factory defaults operating conditions (*RST). Autorange off, Display off, Limits off, Trigger delay $=0$..
8. For ACV inputs at frequencies of 50 or $60 \mathrm{~Hz}(\pm 10 \%)$, add the following to "\% of Range" uncertainty: 100 mV $0.25 \%, 1 \mathrm{~V} 0.05 \%, 10 \mathrm{~V} 0.13 \%, 100 \mathrm{~V} 0.03 \%, 750 \mathrm{~V} 0.015$ (Model 2701 only)..
9. Auto Zero off.
10. Sample count $=1024$.
11. DETector: BANDwidth 300 with nPLC $=0.006$ (2701 only).
12. Maximum useful limit with trigger delay $=175 \mathrm{~ms}$.
13. Includes measurement and binary data transfer out GPIB or ASCII data transfer for Ethernet and RS-232 (Reading Element only).

Integra Series
 Mainframes
 Multimeter/Switch Systems

GENERAL SPECIFIGATIONS:

EXPANSION SLOTS: 2 (2700, 2701), 5 (2750).
POWER SUPPLY: 100V / 120V / 220V / $240 \mathrm{~V} \pm 10 \%$.
LINE FREQUENCY: 45 Hz to 66 Hz and 360 Hz to 440 Hz , automatically sensed at power-up. POWER CONSUMPTION: 28VA (2700), 80VA (2701, 2750).
OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Specified to $80 \% \mathrm{RH}$ at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
BATTERY: Lithium battery-backed memory, 3 years @ $23^{\circ} \mathrm{C}$ (Models 2700, 2750) Lithium Ion battery-backed memory, 30 days of buffer storage @ $23^{\circ} \mathrm{C}$ and >4 hours charge time. Battery lifetime: >3 years @ $23^{\circ} \mathrm{C},>1.5$ years @ $50^{\circ} \mathrm{C}$ (Model 2701)
WARRANTY: 3 years excludes battery.
EMC: Conforms to European Union Directive 89/336/EEC EN61326-1.
SAFETY: Conforms to European Union Directive 73/23/EEC EN61010-1, CAT I
VIBRATION: MIL-PRF-28800F Class 3, Random.
WARM-UP: 2 hours to rated accuracy.
DIMENSIONS:
Rack Mounting: 89 mm high $\times 213 \mathrm{~mm}$ wide $(2700,2701)$ or 485 mm wide $(2750) \times 370 \mathrm{~mm}$ deep (3.5 in $\times 8.375$ in or 19 in $\times 14.563$ in).
Bench Configuration (with handle and feet): 104 mm high $\times 238 \mathrm{~mm}$ wide $(2700,2701)$ or 485 mm wide $(2750) \times 370 \mathrm{~mm}$ deep $(4.125$ in $\times 9.375$ in $(2700,2701)$ or 19 in $(2750) \times$ 14.563 in).

SHIPPING WEIGHT: 6.5 kg (14 lbs .) (2700,2701) or 13 kg (28 lbs .) (2750).
DIGITAL I/O: 2 inputs, 1 for triggering and 1 for hardware interlock.
5 outputs, 4 for Reading Limits and 1 for Master Limit. Outputs are TTL compatible or can sink 250 mA , diode clamped to 40 V .

TRIGGERING AND MEMORY:
Window Filter Sensitivity: $0.01 \%, 0.1 \%, 1 \%, 10 \%$, or Full-scale of range (none)
Reading Hold Sensitivity: $0.01 \%, 0.1 \%, 1 \%$, or 10% of reading.
Trigger Delay: 0 to 99 hrs (1 ms step size).
External Trigger Delay: <2ms (2700), <1ms (2701, 2750)
External Trigger Jitter: <1ms (2700), <500 $\mu \mathrm{s}$ (2701), $<500 \mu \mathrm{~s}(2750)$.
Memory Size: 55,000 readings (2700), 450,000 readings (2701), 110,000 readings (2750).
MATH FUNCTIONS: Rel, Min/Max/Average/Std Dev/Peak-to-Peak (of stored reading), Limit Test,
$\%, 1 / \mathrm{x}$, and $\mathrm{mX}+\mathrm{b}$ with user defined units displayed.
REMOTE INTERFACE:
GPIB (IEEE-488.2) (2700, 2750) and RS-232C.
Ethernet TCP/IP (10bT and 100bT) (2701)
SCPI (Standard Commands for Programmable Instruments)
LabVIEW Drivers
ACCESSORIES SUPPLIED: Model 1751 Safety Test Leads, Product Information CD-ROM. (Mode 2701 only: Getting Started Foldout, 3 m Ethernet crossover cable, software CD-ROM with IVI/VISA drivers for VB, VC/C++, LabVIEW, TestPoint, and LabWindows/CVI, plus free runtime start-up software.)
ACCESSORIES AVAILABLE:
4288-7Rack Mount Rear Support Kit (2750)
77XX-904A Module Manual
77XXModules
Extended Warranty
ExceLINX-1A (Excel add-in datalogger software)
TestPoint ${ }^{\text {™ }}$ Software Development Package
FOR MODEL 2701:
Ethernet: RJ-45 connector, TCP/IP, 10bT and 100bTx autosensed.
IP Configuration: Static or DHCP.
Password Protection: 11 Characters.
Software: Windows 98, NT, 2000, ME, and XP compatible. Internet Explorer 5.0 or higher required. Web page server by 2701 .

Integra Series Modules

7700 20-CHANNEL DIFFERENTIAL MULTIPLEXER W/AUTOMATIC CJC

FEATURES

- 20 channels for general-purpose measurements, plus two channels to measure current.
- 2- or 4 -wire measurement.
- Oversize screw terminal connection blocks are standard for easier connections.
- Automatic CJC sensors on the scanner card mean there are no other accessories are required to make thermocouple temperature measurements.
- Configurable as two independent banks of multiplexers.
- $300 \mathrm{~V}, 1 \mathrm{~A}$ capacity for voltage channels; $60 \mathrm{~W}, 125 \mathrm{VA}$.
- 3A capacity for current channels.
- Relay closures stored in on-board memory.

GENERAL

20 CHANNELS: 20 channels of 2-pole relay input. All channels configurable to 4-pole. 2 CHANNELS: 2 channels of current only input.
RELAY TYPE: Latching electromechanical.
ACTUATION TIME: $<3 \mathrm{~ms}$.
FIRMWARE: Specified for Model 2700 rev. A01, 2701 rev. A01, and 2750 rev. A01 or higher.

CAPABILITIES

CHANNELS 1-20: Multiplex one of 202 -pole or one of 104 -pole signals into DMM. CHANNELS 21-22: Multiplex one of 22 -pole current signals into DMM.

INPUTS

MAXIMUM SIGNAL LEVEL:
Channels (1-20): 300 V DC or 300 V rms (425 V peak) for AC waveforms, 1 A switched, $60 \mathrm{~W}, 125 \mathrm{VA}$ maximum.
Channels (21-22): 60V DC or 30 V rms, 3 A switched, $60 \mathrm{~W}, 125 \mathrm{VA}$ maximum.
CONTACT LIFE (typ.): $>10^{5}$ operations at max signal level.

$$
>10^{8} \text { operations cold switching. }
$$

CONTACT RESISTANCE: $<1 \Omega$ at end of contact life.
CONTACT POTENTIAL: $< \pm 500 \mathrm{nV}$ typical per contact, $1 \mu \mathrm{~V}$ max.

$$
< \pm 500 \mathrm{nV} \text { typical per contact pair, } 1 \mu \mathrm{~V} \text { max. }
$$

OFFSET CURRENT: $<100 \mathrm{pA}$.
CONNECTOR TYPE: Screw terminal, \#20 AWG wire size.
ISOLATION BETWEEN ANY TWO TERMINALS: $>10^{10} \Omega,<100 \mathrm{pF}$.
ISOLATION BETWEEN ANY TERMINAL AND EARTH: $>10^{\circ} \Omega,<200 \mathrm{pF}$.
INSERTION LOSS (50Ω Source, 50Ω Load):

	w/Internal DMM	w/o Internal DMM*
$<0.1 \mathrm{~dB}:$	1 MHz	1 MHz
$<3 \mathrm{~dB}:$	2 MHz	50 MHz
CROSSTALK (50 Load):	w/Internal DMM	w/o Internal DMM*
10 MHz:	$<-40 \mathrm{~dB}$	$<-40 \mathrm{~dB}$
$\mathbf{2 5} \mathrm{MHz}:$	$* *$	$<-25 \mathrm{~dB}$

COMMON MODE VOLTAGE: 300 V or 300 V rms (425 V peak) for AC waveforms between any terminal and chassis.
TEMPERATURE ACCURACY USING INTERNAL CJC: $1.0^{\circ} \mathrm{C}$ (see mainframe specification for details).

* Channels 24 and 25 are open. Refer to ROUTe:MULTiple command in 27XX User Manual.
** Not valid.

ENVIRONMENTAL:

OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Specified to 80% R.H. at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$.
WEIGHT: $0.45 \mathrm{~kg}(1 \mathrm{lb})$.
ACCESSORY AVAILABLE: Model 7401 Type K Thermocouple Wire, 30.5 m (100 ft).
www.keithley.com

Integra Series

 Modules
7701 LOW-VOLTAGE 32-CHANNEL DIFFERENTIAL MULTIPLEXER

FEATURES

- Configurable for 32 channels of differential measurements, with up to 16 channels of 4-pole measurements.
- Configurable for 32 channels of common-side 4 -wire ohms.
- Configurable as two independent banks of multiplexers.
- Two female D-shell connectors are standard for secure hook-up and quick teardown.
- $150 \mathrm{~V}, 1 \mathrm{~A}$ capacity for voltage channels; $60 \mathrm{~W}, 125 \mathrm{VA}$
- Two mating IDC connectors for ribbon cable are supplied.
- Relay closures stored in on-board memory.
- Screw terminal jumpers allow user-configurable DMM connections.

GENERAL

32 CHANNELS: 32 channels of 2-pole relay input. All channels configurable to 4-pole. RELAY TYPE: Latching electromechanical.
ACTUATION TIME: $<3 \mathrm{~ms}$.
FIRMWARE: Specified for Model 2700 rev. B03, Model 2701 rev. A01, and Model 2750 rev. A01 or higher.
DMM CONNECTIONS: Screw terminals provide internal DMM connections to channels 34 and 35 and connections to external wiring access.

CAPABILITIES

CHANNELS 1-32: Multiplex one of 32 2-pole or one of 164 -pole signals into DMM. Configuration supports dual 1×16 independent multiplexers.

INPUTS

MAXIMUM SIGNAL LEVEL: Any channel to Any Channel (1-32): 150V DC or $150 \mathrm{Vrms}(212 \mathrm{~V}$ peak) for AC waveforms, 1 A switched, $60 \mathrm{~W}, 125 \mathrm{VA}$ maximum. SAFETY: Conforms to European Union Directive 73/23/EEC EN61010-1, CAT I.
CONTACT LIFE (typ): $>10^{5}$ operations at max signal level. $>10^{8}$ operations cold switching.
CONTACT RESISTANCE: $<1 \Omega$ any path and additional 1Ω at end of contact life. CONTACT POTENTIAL: $<6 \mu \mathrm{~V}$ per contact pair.
OFFSET CURRENT: <100pA.
CONNECTOR TYPE: 50 -pin female D-shell, Channels 1-24.
25 -pin female D-shell, Channels 25-32.
Supplied with male IDC ribbon cable connectors.
ISOLATION BETWEEN ANY TWO TERMINALS: $>10^{\circ} \Omega,<200 \mathrm{pF}$.
ISOLATION BETWEEN ANY TERMINAL AND EARTH: $>10^{9} \Omega,<400 \mathrm{pF}$.
CROSS TALK ($1 \mathrm{MHz}, 50 \Omega$ Load): $<-35 \mathrm{~dB}$.
INSERTION LOSS (50Ω Source, 50Ω Load): $<0.35 \mathrm{~dB}$ below 1 MHz .
$<3 \mathrm{~dB}$ below 2 MHz .
COMMON MODE VOLTAGE: 300 VDC or 300 Vrms (425 V peak) for AC waveforms between any terminal and chassis.

ENVIRONMENTAL:

OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Specified to 50% R.H. at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$.
WEIGHT: <0.52kg (1.16 lb).
ACCESSORIES AVAILABLE:
Model $7789 \quad 50 / 25$ Pin Male D-Shell Solder Cup Connectors
Model $7790 \quad 50 / 50 / 25$ Pin Female/Male D-Shell IDC Connectors
Model 7705-MTC-2 50 Pin Male to Female DSUB Cable, $2 \mathrm{~m}(6.6 \mathrm{ft})$.
Model 7707-MTC-2 25 Pin Male to Female DSUB Cable, $2 \mathrm{~m}(6.6 \mathrm{ft})$.

See page 43 for common-side 4-wire ohms configuration example.

Integra Series
Modules

Multimeter/Switch Systems

7702 40-CHANNEL DIFFERENTIAL MULTIPLEXER

features

- There are 40 channels for general-purpose measurement, plus 2 channels to measure current.
- 2- or 4 -wire measurement.
- Oversize screw terminal connection blocks are standard for easier connection.
- Configurable as two independent banks of multiplexers.
- $300 \mathrm{~V}, 1 \mathrm{~A}$ capacity for voltage channels; $60 \mathrm{~W}, 125 \mathrm{VA}$.
- 3A capacity for current channels.
- Relay closures stored in on-board memory.

GENERAL

40 CHANNELS: 40 channels of 2-pole relay input. All channels configurable to 4 -pole.
2 CHANNELS: 2 channels of current only input.
RELAY TYPE: Latching electromechanical.
ACTUATION TIME: $<3 \mathrm{~ms}$.
FIRMWARE: Specified for Model 2700 rev. A01, 2701 rev. A01, and 2750 rev. A01 or higher.

CAPABILITIES

CHANNELS 1-40: Multiplex one of 402 -pole or one of 204 -pole signals into DMM. CHANNELS 41-42: Multiplex one of 2 2-pole current signals into DMM.

INPUTS

MAXIMUM SIGNAL LEVEL:
Channels (1-40): 300 V DC or rms, 1 A switched, $60 \mathrm{~W}, 125 \mathrm{VA}$ maximum.
Channels (41-42): 60 V DC or 30 V rms, 3 A switched, $60 \mathrm{~W}, 125 \mathrm{VA}$ maximum.
CONTACT LIFE (typ): $>10^{5}$ operations at max signal level.

$$
>10^{8} \text { operations cold switching. }
$$

CONTACT RESISTANCE: $<1 \Omega$ at end of contact life.
CONTACT POTENTIAL: $< \pm 500 \mathrm{nV}$ typical per contact, $1 \mu \mathrm{~V}$ max.

$$
< \pm 500 \mathrm{nV} \text { typical per contact pair, } 1 \mu \mathrm{~V} \text { max. }
$$

OFFSET CURRENT: <100pA.
CONNECTOR TYPE: Screw terminal, \#20 AWG wire size.
ISOLATION BETWEEN ANY TWO TERMINALS: $>10^{10} \Omega,<100 \mathrm{pF}$.
ISOLATION BETWEEN ANY TERMINAL AND EARTH: $>10^{\circ} \Omega,<200 \mathrm{pF}$.
CROSS TALK ($10 \mathrm{MHz}, 50 \Omega$ Load): <-40dB.
INSERTION LOSS (50Ω Source, 50Ω Load): $<0.1 \mathrm{~dB}$ below 1 MHz .
$<3 \mathrm{~dB}$ below 2 MHz .
COMMON MODE VOLTAGE: 300 V between any terminal and chassis.

ENVIRONMENTAL

OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

$$
\text { Specified to } 80 \% \text { R.H. at } 35^{\circ} \mathrm{C} \text {. }
$$

STORAGE ENVIRONMENT: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$.
WEIGHT: $0.5 \mathrm{~kg}(1.1 \mathrm{lb})$.

Integra Series

Multimeter/Switch Systems

7703 32-CHANNEL HIGH SPEED DIFFERENTIAL MULTIPLEXER

FEATURES

- There are 32 channels for general purpose measurement.
- Relay actuation time of less than 1 ms for high-speed scanning.
- 2 or 4 wire measurement
- Two 50 -pin female "D-sub" connectors are standard for secure hook-up and quick teardown.
- Configurable as two independent banks of multiplexers
- Reed relay based design with 300 volt, $500 \mathrm{~mA} ; 10 \mathrm{VA}$.
- Two mating connector with solder cup (Model 7788) are supplied.
- Relay closures stored in on-board memory.

GENERAL

32 CHANNELS: 32 channels of 2-pole relay input. All channels configurable to 4 -pole.
RELAY TYPE: Reed.
ACTUATION TIME: $<1 \mathrm{~ms}$.
FIRMWARE: Specified for Model 2700 rev. A01, 2701 rev. A01, and 2750 rev. A01 or higher.

CAPABILITIES

CHANNELS 1-32: Multiplex one of 32 2-pole or one of 16 4-pole signals into DMM.

INPUTS

MAXIMUM SIGNAL LEVEL
Channels (1-32): 300 V DC or rms, 0.5 A switched, 10 W maximum.
Contact Life (typ): $>5 \times 10^{4}$ operations at max signal level. $>10^{8}$ operations cold switching
CONTACT RESISTANCE: $<1 \Omega$ at end of contact life.
CONTACT POTENTIAL: $< \pm 3 \mu \mathrm{~V}$ typical per contact, $6 \mu \mathrm{~V}$ max. $< \pm 3 \mu \mathrm{~V}$ typical per contact pair, $6 \mu \mathrm{~V}$ max.
OFFSET CURRENT: <100pA.
CONNECTOR TYPE: 50 pin D-sub $\times 2$.
RELAY DRIVE CURRENT: 20 mA per channel.
ISOLATION BETWEEN ANY TWO TERMINALS: $>10^{\circ} \Omega,<200 \mathrm{pF}$.
ISOLATION BETWEEN ANY TERMINAL AND EARTH: $>10^{\circ} \Omega,<400 \mathrm{pF}$.
CROSS TALK ($1 \mathrm{MHz}, 50 \Omega$ Load): <- 40 dB .
INSERTION LOSS (50Ω Source, 50Ω Load): $<0.35 \mathrm{~dB}$ below 1 MHz .
$<3 \mathrm{~dB}$ below 2 MHz .
COMMON MODE VOLTAGE: 300 V between any terminal and chassis.

ENVIRONMENTAL

OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Specified to 80% R.H. at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$.
WEIGHT: 0.8 kg (1.75 lbs).
aCCESSORIES AVAILABLE:
Model 7705-MTC-2 50 Pin Male to Female DSUB Cable, 2 m (6.6 ft)

Integra Series
 Modules
 Multimeter/Switch Systems

7705 40-CHANNEL CONTROL MODULE

FEATURES

- 40 channels designed for controlling power to the DUT, switching loads, controlling light indicators and relays, etc.
- Two 50-pin female "D-sub" connectors are standard for secure hook-up and quick teardown.
- $300 \mathrm{~V}, 2 \mathrm{~A}$ capacity.
- Two mating connectors with solder cup pins (Model 7788) are supplied.
- Relay closures stored in on-board memory.

GENERAL

RELAY SWITCH CONFIGURATION: 40 independent channels of 1-pole switching Isolated from internal DMM.
CONTACT CONFIGURATION: 1 pole Form A.
RELAY TYPE: Latching electromechanical.
CONNECTOR TYPE: Two 50-pin female D-sub connectors.
FIRMWARE: Specified for Model 2700 rev. A01, 2701 rev. A01, and 2750 rev. A01 or higher.

INPUTS

MAXIMUM SIGNAL LEVEL: 300VDC or rms, 2A switched, 60 W (DC, resistive), 125VA (AC , resistive).
CONTACT LIFE: Cold Switching: 10^{8} closures.
At Maximum Signal Levels: 10^{5} closures.
CHANNEL RESISTANCE (per conductor): $<1 \Omega$.
CONTACT POTENTIAL: $\leq 4 \mu \mathrm{~V}$ per contact.
OFFSET CURRENT: <100pA.
ACTUATION TIME: 3 ms .
ISOLATION: Channel to Channel: $>10^{\circ} \Omega,<50 \mathrm{pF}$.
Common Mode: $>10^{\circ} \Omega,<100 \mathrm{pF}$.
CROSSTALK ($1 \mathrm{MHz}, 50 \Omega$ load): <-35dB.
INSERTION LOSS (50Ω source, $\mathbf{5 0 \Omega}$ load): $<0.3 \mathrm{~dB}$ below $1 \mathrm{MHz},<3 \mathrm{~dB}$ below 10 MHz .

COMMON MODE VOLTAGE: 300 V between any terminal and chassis.

ENVIRONMENTAL

OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Specified to 80% R.H. at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$.
WEIGHT: $0.45 \mathrm{~kg}(1 \mathrm{lb})$.
ACCESSORIES AVAILABLE:
Model 7705-MTC-2 50 Pin Male to Female DSUB Cable, $2 \mathrm{~m}(6.6 \mathrm{ft})$.
www.keithley.com
A GREATER MEASURE OF CONFIDENCE

7706 ALL-IN-ONE I/O MODULE

FEATURES

- 20 channels of analog input (w/automatic CJC) for general-purpose measurement
- 16 channels of digital output.
- Event counter/totalizer can monitor and control system components, such as fixturing, limit switches, pass/fail indicators, external voltage sources, loads, door closures, revolutions, etc., while performing mixed signal measurement.
- $300 \mathrm{~V}, 1 \mathrm{~A}$ capacity; $60 \mathrm{~W}, 125 \mathrm{VA}$ maximum
- Configurable as two independent banks of multiplexers.
- Two analog outputs $(\pm 12 \mathrm{~V}, 5 \mathrm{~mA})$.
- Relay closures stored in on-board memory.

GENERAL

20 CHANNELS: 20 channels of 2-pole relay input. All channels configurable to 4 -pole.
RELAY TYPE: Latching electromechanical.
ACTUATION TIME: <3ms.
FIRMWARE: Specified for Model 2700 rev. A02 or B01, 2701 rev. A01, and 2750 rev. A01 or higher.

CAPABILITIES

CHANNELS 1-20: Multiplex one of 202 -pole or one of 104 -pole signals into DMM.
Channels 21-25 are referenced to chassis ground.
CHANNELS 21-22: 16 Digital Outputs.
CHANNELS 23-24: Analog Voltage Output (2).
CHANNELS 25: Totalize Input.

INPUTS

MAXIMUM SIGNAL LEVEL (Channels 1-20): 300V DC or rms, 1 A switched, 60 W , 125VA maximum
CONTACT LIFE (typ.): $>10^{5}$ operations at max. signal level: $>10^{8}$ operations cold switching.
CONTACT RESISTANCE: $<1 \Omega$ at end of contact life
CONTACT POTENTIAL: $< \pm 2 \mu \mathrm{~V}$ typical per contact, $3 \mu \mathrm{~V}$ max.
OFFSET CURRENT: <100pA.
CONNECTOR TYPE: Screw terminal, \#20 AWG wire size.
ISOLATION BETWEEN ANY TWO TERMINALS: $>10^{\circ} \Omega,<100 \mathrm{pF}$
ISOLATION BETWEEN ANY TERMINAL AND EARTH: $>10^{\circ} \Omega,<200 \mathrm{pF}$.
CROSS TALK ($10 \mathrm{MHz}, 50 \Omega$ Load): <-35dB.
INSERTION LOSS (50Ω Source, 50Ω Load): $<0.1 \mathrm{~dB}$ below 1 MHz .
$<3 \mathrm{~dB}$ below 2Mhz.
COMMON MODE VOLTAGE: 300 V between any terminal and chassis.
TEMPERATURE ACCURACY USING INTERNAL CJC: $1.0^{\circ} \mathrm{C}$ (see mainframe specification for details).

TOTALIZE INPUT

MAXIMUM COUNT: $2^{32}-1$.
TOTALIZE INPUT: 100 kHz (max), rising or falling edge, programmable.
SIGNAL LEVEL: 1 Vp -p (min), 42 Vpk (max).
THRESHOLD: 0 V or TTL, jumper selectable.
DATE INPUT: TTL-Hi, TTL-Lo, or none.
COUNT RESET: manual or Read+Reset.
READ SPEED: 50/s.

ANALOG VOLTAGE OUTPUT

DAC 1, 2: $\pm 12 \mathrm{~V}$ in 1 mV increments, non-isolated. RESOLUTION: 1mV.
$\mathrm{I}_{\text {our }}$: 5 mA max.
SETTLING TIME: 1 ms to 0.01% of output.
ACCURACY $\pm(\%$ of output +mV$)$:
1 year $\pm 5^{\circ} \mathrm{C}: \quad 0.15 \%+19 \mathrm{mV}$;
90 day $\pm 5^{\circ} \mathrm{C}$: $\quad 0.1 \%+19 \mathrm{mV}$;
24 hour $\pm 1^{\circ} \mathrm{C}: \quad 0.04 \%+19 \mathrm{mV}$.
TEMPERATURE COEFFICIENT:
$\pm(0.015 \%+1 \mathrm{mV}) /{ }^{\circ} \mathrm{C}$.

DIGITAL OUTPUT

$\mathbf{V}_{\text {out }}(\mathbf{L}):<0.8 \mathrm{~V} @$ Iout $=400 \mathrm{~mA}$.
$\mathrm{V}_{\text {out }}(\mathrm{H}):>2.4 \mathrm{~V} @$ Iout $=1 \mathrm{~mA}$.
$\mathbf{V}_{\text {out }}(\mathbf{H}) \mathbf{M A X}$.: $<42 \mathrm{~V}$ with external open drain pull-up.
WRITE SPEED: 50/s.

ENVIRONMENTAL
OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Specified to 80% R.H. at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$.
WEIGHT: $0.5 \mathrm{~kg}(1.1 \mathrm{lbs})$.

Integra Series Modules

7707 MULTIPLEXER-DIGITAL I/O MODULE

GENERAL
10 CHANNELS: 10 channels of 2 -pole relay input. All channels configurable to 4 -pole.
RELAY TYPE: Latching electromechanical.
ACTUATION TIME: <3ms.
FIRMWARE: Specified for Model 2700 rev. B03, 2701 rev. A01, and 2750 rev. A01 or higher.
CAPACITY: Model 2700: (1) 7707 and (1) 77XX, except 7706.
Model 2701: Any combination of 77XX modules.
Model 2750: (4) 7707 and (1) 77XX, except 7706. A 7706 module may be substituted for a 7707 module.

CAPABILITIES

CHANNELS 1-10: Multiplex one of 102 -pole or one of 5 4-pole signals into DMM. CHANNELS 11-14: 32 Digital Inputs/Outputs referenced to chassis ground. THERMAL PROTECTION: Channels $11-14$ are thermally protected to 1 A .

INPUTS (CHANNELS 1-10)

maximum signal level: Any Channel to Any Channel (1-10): 300VDC or 300 Vrms (425 V peak) for AC waveforms, 1 A switched, $60 \mathrm{~W}, 125 \mathrm{VA}$ maximum.
SAFETY CATEGORY: Conforms to European Union Directive 73/23/EEC EN 61010-1, CAT I.
CONTACT LIFE (typ.): $>10^{5}$ operations at max. signal level: $>10^{8}$ operations cold switching.
CONTACT RESISTANCE: $<1 \Omega$ any path and additional 1Ω at end of contact life. CONTACT POTENTIAL: $<6 \mu \mathrm{~V}$ typical per contact pair and additional $5 \mu \mathrm{~V}$ with Channels 11-14 at rate $\mathrm{V}_{\text {out }}(\mathrm{L})$.
OFFSET CURRENT: <100pA.
CONNECTOR TYPE: 50 -pin male D-shell, Channels 11-14.
25 -pin female D-shell, Channels $1-10$.
Supplied with female and male IDC ribbon cable connectors.
ISOLATION BETWEEN ANY TWO TERMINALS: $>10^{\circ} \Omega,<100 \mathrm{pF}$ with isolation channels 16 and 17 open.
ISOLATION BETWEEN ANY TERMINAL AND EARTH: $>10^{9} \Omega,<200 \mathrm{pF}$.
CROSS TALK (10MHz, 50Ω Load): <-35dB.
INSERTION LOSS (50Ω Source, 50Ω Load): $<0.1 \mathrm{~dB}$ below 1 MHz .
$<3 \mathrm{~dB}$ below 2 MHz .
COMMON MODE VOLTAGE: 300 VDC or 300 Vrms (425 V peak) for AC waveforms between any terminal and chassis.

DIGITAL INPUT/OUTPUT (CHANNELS 11-14)

$\mathbf{V}_{\mathrm{IV}}(\mathrm{L}):<0.8 \mathrm{~V}$ (TTL).
$\mathrm{V}_{\mathrm{IV}}(\mathrm{H}):>2 \mathrm{~V}(\mathrm{TTL})$.
$\mathbf{V}_{\text {oUT }}(\mathbf{L}):<1.0 \mathrm{~V} @ \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}$.
$\mathbf{V}_{\text {OUT }}(\mathbf{H}):>2.4 \mathrm{~V} @ \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$.
$\mathbf{V}_{\text {OUT }}(\mathbf{H}) \mathbf{M A X} .:<40 \mathrm{~V}$ with external open drain pull-up.
READ/WRITE SPEED: 50/s.

ENVIRONMENTAL

OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Specified to 50% R.H. at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$.
WEIGHT: $<0.5 \mathrm{~kg}(1.1 \mathrm{lbs})$.
ACCESSORIES AVAILABLE:
Model $7790 \quad$ 50/50/25 Pin Female/Male D-Shell IDC Connectors
Model 7705-MTC-2 50 Pin Male to Female DSUB Cable, 2 m (6.6 ft).
Model 7707-MTC-2 25 Pin Male to Female DSUB Cable, 2 m (6.6 ft).

FEATURES

- 10 channels of analog input for general-purpose measurement.
- 32 channels of digital input and output (four 8 -bit ports) for I/O control.
- $300 \mathrm{~V}, 1 \mathrm{~A}$ capacity; $60 \mathrm{~W}, 125 \mathrm{VA}$ maximum (analog).
- Configurable as two independent banks of multiplexers.
- $33 \mathrm{~V}, 100 \mathrm{~mA}$ capacity (digital).
- Two mating IDC connectors supplied.
- Digital outputs are short circuit protected.
- Relay closures stored in on-board memory.

Integra Series

Multimeter/Switch Systems

7708 40-CHANNEL DIFFERENTIAL MULTIPLEXER

 MODULE
FEATURES

- 40 differential channels for general-purpose measurements.
- 2 - or 4 -wire measurements.
- Oversize screw terminal connection blocks are standard for easier connection.
- $300 \mathrm{~V}, 1 \mathrm{~A}$ capacity for voltage channels; $60 \mathrm{~W}, 125 \mathrm{VA}$
- Configurable as two independent banks of multiplexers.
- Built-in CJC sensors automatically linearize thermocouples.
- Relay closures stored in on-board memory

GENERAL

40 CHANNELS: 40 channels of 2-pole relay input. All channels configurable to 4-pole RELAY TYPE: Latching electromechanical.
ACTUATION TIME: <3ms.
FIRMWARE: Specified for Model 2700 rev. B02, 2701 rev. A01, and 2750 rev. A01 or higher.

CAPABILITIES

CHANNELS 1-40: Multiplex one of 402 -pole or one of 204 -pole signals into DMM.

INPUTS

MAXIMUM SIGNAL LEVEL
Channels (1-40): 300V DC or rms, 1A switched, 60W, 125VA maximum.
CONTACT LIFE (typ): $>10^{5}$ operations at max. signal level.

$$
>10^{8} \text { operations cold switching }
$$

CONTACT RESISTANCE: $<1 \Omega$ at end of contact life.
CONTACT POTENTIAL: < $\pm 500 \mathrm{nV}$ typical per contact, $1 \mu \mathrm{~V}$ max.

$$
< \pm 500 \mathrm{nV} \text { typical per contact pair, } 1 \mu \mathrm{~V} \text { max. }
$$

OFFSET CURRENT: <100pA.
CONNECTOR TYPE: Screw terminal, \#20 AWG wire size.
ISOLATION BETWEEN ANY TWO TERMINALS: $>10^{10} \Omega,<100 \mathrm{pF}$.
ISOLATION BETWEEN ANY TERMINAL AND EARTH: $>10^{\circ} \Omega,<200 \mathrm{pF}$.
CROSS TALK ($10 \mathrm{MHz}, 50 \Omega$ Load): <- 40 dB .
INSERTION LOSS (50Ω Source, 50Ω Load): $<0.1 \mathrm{~dB}$ below 1 MHz .
$<3 \mathrm{~dB}$ below 2 MHz .
COMMON MODE VOLTAGE: 300 V between any terminal and chassis.
TEMPERATURE ACCURACY USING INTERNAL CJC: $1.0^{\circ} \mathrm{C}$ (see mainframe specification for details).

ENVIRONMENTAL

OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

$$
\text { Specified to } 80 \% \text { R.H. at } 35^{\circ} \mathrm{C} \text {. }
$$

STORAGE ENVIRONMENT: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$.
WEIGHT: $0.52 \mathrm{~kg}(1.16 \mathrm{lb})$.
aCCESSORIES AVAILABLE:
Model 7401 Type K Thermocouple Wire, 30.5m (100 ft)

Integra Series
 Multimeter/Switch Systems
 Modules

7709 6×8 MATRIX MODULE

FEATURES

- Automatic 2 - or 4 -wire connection to DMM
- 6 row $\times 8$ column matrix
- Two female "D-sub" connectors are standard for secure hook-up and quick teardown.
- 300V, 1A capacity.
- Two mating IDC connectors for ribbon cable are supplied.
- Relay closures stored in on-board memory.

GENERAL

MATRIX CONFIGURATION: 6 rows $\times 8$ columns.
CONTACT CONFIGURATION: 2 pole Form A.
FIRMWARE: Specified for Model 2700 rev. B03, Model 2701 rev. A01, and Model 2750 rev. A01 or higher.
RELAY TYPE: Latching electromechanical.
aCtuation time: <3ms.

CAPABILITIES

DMM CONNECTION:

2-Wire Functions

Row 1, channels $1-8$, through channel 50.

4-Wire Functions

Row 1, channels 1-4 (Source) through channel 50 and Row 2, channels 13-16 (Sense), through channel 49.
CLOSE CHANNEL: CLOSE command connects channels 1-8 to DMM. For 4-wire, channels $1-4$ are automatically paired with channels $13-16$. ROUTe:MULTiple allows any combination of rows and columns to be connected at the same time.

INPUTS

MAXIMUM SIGNAL LEVEL: Any Channel to Any Channel (1-48): 300VDC or 300 Vrms (425 V peak) for AC waveforms, 1 A switched, $60 \mathrm{~W}, 125 \mathrm{VA}$ maximum. SAFETY: Conforms to European Union Directive 73/23/EEC EN61010-1, CAT I. CONTACT LIFE (typ): $>10^{5}$ operations at max signal level.

$$
>10^{8} \text { operations cold switching. }
$$

CONTACT RESISTANCE: $<1 \Omega$ any path and additional 1Ω at end of contact life.
CONTACT POTENTIAL: $<3 \mu \mathrm{~V}$ per contact pair.
OFFSET CURRENT: $<100 \mathrm{pA}$.
CONNECTOR TYPE: 50-pin female D-shell for rows and columns. 25-pin female D-shell for "daisy-chain" rows.
Supplied with male IDC ribbon cable connectors.
ISOLATION BETWEEN ANY TWO TERMINALS: $>10^{9} \Omega,<200 \mathrm{pF}$.
ISOLATION BETWEEN ANY TERMINAL AND EARTH: $>10{ }^{9} \Omega,<400 \mathrm{pF}$.
CROSS TALK ($1 \mathrm{MHz}, 50 \Omega$ Load): $<-35 \mathrm{~dB}$.
INSERTION LOSS (50Ω Source, 50Ω Load): $<0.35 \mathrm{~dB}$ below 1 MHz . $<3 \mathrm{~dB}$ below 2 MHz .
COMMON MODE VOLTAGE: 300 VDC or 300 Vrms (425 V peak) for AC waveforms
between any terminal and chassis.

ENVIRONMENTAL:

OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Specified to 50% R.H. at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$.
WEIGHT: $<0.52 \mathrm{~kg}(1.16 \mathrm{lb})$.
ACCESSORIES AVAILABLE:
Model $7789 \quad 50 / 25$ Pin Male D-Shell Solder Cup Connectors
Model $7790 \quad 50 / 50 / 25$ Pin Female/Male D-Shell IDC Connectors
Model 7705-MTC-2 50 Pin Male to Female DSUB Cable, $2 \mathrm{~m}(6.6 \mathrm{ft})$.
Model 7707-MTC-2 25 Pin Male to Female DSUB Cable, 2 m (6.6 ft).

7710 20-CHANNEL SOLID STATE/LONG-LIFE DIFFERENTIAL MULTIPLEXER W/AUTOMATIC CJC

FEATURES

- Solid-state relays for long life and low maintenance (100 times longer life than mechanical relays)
- Higher scanning speeds of up to 500 channels per second
- Automatic CJC with no extra accessories required for thermocouple measurements
- Removable screw terminals offer simple, quick connections
- 20 channels for general purpose measurements
- Configurable as two independent banks of multiplexers

GENERAL

CHANNELS: 20 channels of 2-pole relay input. All channels configurable to 4-pole. relay type: Solid State Opto-Coupled FET.
ACTUATION TIME: $<0.5 \mathrm{~ms}$ (100 mA load).
FIRMWARE: Specified for Model 2700 Rev. B05, Model 2750 Rev. A04, and Model 2701 Rev. A01.

CAPABILITIES

CHANNELS 1-20: Multiplex one of 202 -pole or one of 104 -pole signals into DMM.

INPUTS

MAXIMUM SIGNAL LEVEL: Any channel to any channel (1-20): 60 VDC or 42 V rms, 100 mA switched, $6 \mathrm{~W}, 4.2 \mathrm{VA}$ maximum.
COMMON MODE VOLTAGE: 300 VDC or 300 Vrms (425 V peak) maximum between any terminal and chassis.
RELAY LIFE (TYP): $>10^{5}$ operational hours max. signal level or 10^{10} operations (guaranteed by design).
RELAY DRIVE CURRENT: 6 mA per channel continuous, 25 mA during initial pulse CHANNEL RESISTANCE (per conductor): $<5 \Omega$.
CONTACT POTENTIAL: $<1 \mu \mathrm{~V}$ per pair.
OFFSET CURRENT: $<3 \mathrm{nA} @ 23^{\circ} \mathrm{C}$ (per channel); additional $0.13 \mathrm{nA} /{ }^{\circ} \mathrm{C}>23^{\circ} \mathrm{C}$. CONNECTOR TYPE: 3.5 mm removable screw terminals, \#20 AWG wire size. ISOLATION BETWEEN ANY TWO TERMINALS: $>10^{9} \Omega,<100 \mathrm{pF}$.
ISOLATION BETWEEN ANY TERMINAL AND EARTH: $>10^{\circ} \Omega,<100 \mathrm{pF}$.
CROSSTALK (CH-CH, $300 \mathrm{kHz}, 50 \Omega$ Load) : <-40dB.
INSERTION LOSS (50Ω Source, 50Ω Load): $<0.5 \mathrm{~dB}$ below $100 \mathrm{kHz},<3 \mathrm{~dB}$ below 2MHz.
TEMPERATURE ACCURACY USING INTERNAL CJC: $1^{\circ} \mathrm{C}$ (Type K) (see mainframe specifications for details).

SCANNING SPEEDS (see mainframe specifications for details)

Multiple Channels, Into Memory	Channels/s		
	2700	2701	2750
7710 Scanning DCV	$180 / \mathrm{s}$	$500 / \mathrm{s}$	$230 / \mathrm{s}$
7710 Scanning DCV with Limits or Time Stamp On	$170 / \mathrm{s}$	$500 / \mathrm{s}$	$230 / \mathrm{s}$
7710 Scanning DCV alternating 2W Ω	$45 / \mathrm{s}$	$130 / \mathrm{s}$	$60 / \mathrm{s}$

Multiple Channels, Into and Out of Memory to GPIB

or Ethernet	Channels/s		
	2700	2701	2750
7710 Scanning DCV	$145 / \mathrm{s}$	$440 / \mathrm{s}$	$210 / \mathrm{s}$
7710 Scanning DCV with Limits or Time Stamp On	$145 / \mathrm{s}$	$440 / \mathrm{s}$	$210 / \mathrm{s}$
7710 Scanning DCV alternating $2 \mathrm{~W} \Omega$	$40 / \mathrm{s}$	$130 / \mathrm{s}$	$55 / \mathrm{s}$

ENVIRONMENTAL

OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Specified for 80% R.H. at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: -25° to $65^{\circ} \mathrm{C}$.
WEIGHT: $0.45 \mathrm{~kg}(1 \mathrm{lb})$.
ACCESSORIES AVAILABLE: Model 7401 Type K Thermocouple Wire, 30.5 m (100 ft).

Integra Series
 Modules

7711 2GHz 50Ω RF MODULE

FEATURES

- Outstanding signal routing performance to 2 GHz
- Dual 1×4 configuration
- Rear panel connections
- On-board switch closure counter
- On-board S-parameter storage
- Switch up to 60VDC

AC PERFORMANCE (End of Life)

For $Z_{\text {load }}=Z_{\text {source }}=50 \Omega$

$<100 \mathrm{MHz} \quad 500 \mathrm{MHz} \quad 1 \mathrm{GHz} \quad 1.5 \mathrm{GHz} \quad 2 \mathrm{GHz}$

	$<100 \mathrm{MHz}$	$\mathbf{5 0 0} \mathbf{~ M H z}$	$\mathbf{1 G H z}$	$\mathbf{1 . 5} \mathbf{~ G H z}$	$\mathbf{2 ~ G H z}$
Insertion Loss	$<0.4 \mathrm{~dB}$	$<0.6 \mathrm{~dB}$	$<1.0 \mathrm{~dB}$	$<1.2 \mathrm{~dB}$	$<2.0 \mathrm{~dB}$

Max.

VSWR Max.	<1.1	<1.2	<1.2	<1.3	$<1.7^{2}$
Ch-Ch Crosstalk 1	-85 dB	-65 dB	-55 dB	-45 dB	-35 dB

Max.
${ }^{1}$ Specification assumes 50Ω termination.
${ }^{2}$ Add 0.1 VSWR after 5×10^{5} closures (no load).

INPUTS (CHANNELS 1-8)

MAXIMUM SIGNAL LEVEL: Any channel to any channel or chassis (1-8): 30Vrms (42V peak for AC waveforms) or $60 \mathrm{VDC}, 0.5 \mathrm{~A}$.
MAXIMUM POWER: 20W per module, 10W per channel (refer to 7711/7712 Manual PA-818 for measurement considerations).
SAFETY: Conforms to European Union Directive 73/23/EEC EN61010-1, CAT I.
EMC: Conforms with European Union Directive 89/336/EEC; EN61326-1.
ISOLATION: Multiplexer to Multiplexer: $>1 \mathrm{G} \Omega$.
Center to Shield: $>1 \mathrm{G} \Omega,<25 \mathrm{pF}$
Channel to Channel: $>100 \mathrm{M} \Omega$.
CONTACT LIFE: 1×10^{6} no load, 1×10^{5} rated load (resistive load).
CONTACT POTENTIAL: $<6 \mu \mathrm{~V}$.
CONTACT RESISTANCE: $<0.5 \Omega$ (initial), $<1 \Omega$ (end of life).
RISE TIME: < 300 ps (guaranteed by design).
SIGNAL DELAY: <3ns.

GENERAL

RELAY TYPE: High frequency electromechanical.
CONTACT CONFIGURATION: Dual 1×4 multiplexer, single pole four throw, Channels 1 and 5 are normally closed.
NOTES: One channel in each multiplex bank is always closed to the corresponding OUT connector.
CLOSE CHANNEL: ROUTe:CLOSe allows a single channel in a multiplex bank to be closed. ROUTe:MULTiple:CLOSe allows two channels (one in each bank) to be closed at one time.
OPEN CHANNEL: ROUTe:OPEN:ALL closes CH1 and CH5 to OUT A and OUT B respectively.
ACTUATION TIME: $<10 \mathrm{~ms}$
FIRMWARE: Specified for Model 2700 rev. B04, 2701 rev. A01, and 2750 rev. A03 or higher.
CONNECTOR TYPE: Ten external rear panel SMA connectors.
MATING TORQUE: $0.9 \mathrm{~N} \cdot \mathrm{~m}(8 \mathrm{in}-\mathrm{lb})$.

ENVIRONMENTAL

OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Specified for $80 \% \mathrm{RH}$ at $35^{\circ} \mathrm{C}$. STORAGE ENVIRONMENT: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$.
WEIGHT: <0.5kg (1.1 lb).

ACCESSORIES AVAILABLE

$7051-2$	BNC Cable, male to male, $0.6 \mathrm{~m}(2 \mathrm{ft})$.
$7051-5$	BNC Cable, male to male, $1.5 \mathrm{~m}(5 \mathrm{ft})$.
$7051-10$	BNC Cable, male to male, $3.0 \mathrm{~m}(10 \mathrm{ft})$
$7711-\mathrm{BNC}-$ SMA	Male SMA to female BNC Cables (5),
	$0.15 \mathrm{~m}(0.5 \mathrm{ft})$
$7712-$ SMA-1	SMA Cable, male to male, $1 \mathrm{~m}(3.3 \mathrm{ft})$
$7712-$ SMA-N	Female SMA to Male N-Type Adapter
S46-SMA-0.5	SMA Cable, male to male, $0.15 \mathrm{~m}(0.5 \mathrm{ft})$.
S46-SMA-1	SMA Cable, male to male, $0.3 \mathrm{~m}(1 \mathrm{ft})$

7712 3.5GHz 50Ω RF MODULE

FEATURES

- 3.5 GHz bandwidth
- Dual 1×4 configuration
- Rear panel SMA connections
- On-board switch closure counter
- On-board S-parameter storage

AC PERFORMANCE (End of Life)

For $Z_{\text {load }}=Z_{\text {source }}=50 \Omega$

	$<\mathbf{5 0 0} \mathbf{~ M H z}$	$\mathbf{1 ~ G H z}$	$\mathbf{2 . 4} \mathbf{~ G H z}$	$\mathbf{3 . 5} \mathbf{~ G H z}$
Insertion Loss $<0.5 \mathrm{~dB}$ $<0.65 \mathrm{~dB}$ $<1.1 \mathrm{~dB}$ MAX $<1.3 \mathrm{~dB}$ VSWR MAX <1.15 <1.2 $<1.45^{2}$ Ch-Ch Crosstalk MAX -75 dB -70 dB -50 dB	-45 dB			

${ }^{1}$ Specification assumes 50Ω termination.
${ }^{2}$ Add 0.1 VSWR after 5×10^{5} closures (no load).

INPUTS (CHANNELS 1-8)

MAXIMUM SIGNAL LEVEL: Any channel to any channel or chassis (1-8): 30Vrms (42 V peak for AC waveforms) or $42 \mathrm{VDC}, 0.5 \mathrm{~A}$.
MAXIMUM POWER: 20W per module, 10W per channel (refer to 7711/7712 Manual PA-818 for measurement considerations).
SAFETY: Conforms to European Union Directive 73/23/EEC EN61010-1, CAT I. EMC: Conforms with European Union Directive 89/336/EEC; EN61326-1.
ISOLATION: Multiplexer to Multiplexer: $>1 \mathrm{G} \Omega$.
Center to Shield: $>1 \mathrm{G} \Omega,<20 \mathrm{pF}$.
Channel to Channel: $>100 \mathrm{M} \Omega$.
CONTACT LIFE: 5×10^{6} no load, 1×10^{5} rated load (resistive load).
CONTACT POTENTIAL: $<12 \mu \mathrm{~V}$.
CONTACT RESISTANCE: $<0.5 \Omega$ (initial), $<1 \Omega$ (end of life)
RISE TIME: <200ps (guaranteed by design).
SIGNAL DELAY: <1.5ns.

GENERAL

RELAY TYPE: High frequency electromechanical.
CONTACT CONFIGURATION: Dual 1×4 multiplexer, single pole four throw, Channels 1 and 5 are normally closed.
NOTES: One channel in each multiplex bank is always closed to the corresponding OUT connector.
CLOSE CHANNEL: ROUTe:CLOSe allows a single channel in a multiplex bank to be closed. ROUTe:MULTiple:CLOSe allows two channels (one in each bank) to be closed at one time.
OPEN CHANNEL: ROUTe:OPEN:ALL closes CH1 and CH5 to OUT A and OUT B respectively.
ACTUATION TIME: $<10 \mathrm{~ms}$.
FIRMWARE: Specified for Model 2700 rev. B04, 2701 rev. A01, and 2750 rev. A03 or higher.
CONNECTOR TYPE: Ten external rear panel SMA connectors.
MATING TORQUE: $0.9 \mathrm{~N} \cdot \mathrm{~m}(8 \mathrm{in}-\mathrm{lb})$.

ENVIRONMENTAL

OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Specified for 80% RH at $35^{\circ} \mathrm{C}$. STORAGE ENVIRONMENT: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$.
WEIGHT: $<0.5 \mathrm{~kg}(1.1 \mathrm{lb})$.

Integra Series
 Multimeter/Switch Systems

KEITHLEY

Integra Series
 Multimeter/Switch Systems

Simple Computer to Single Instrument Control

Interface	Maximum Distance	Maximum Speed	Cable Type
RS-232	$\sim 15 \mathrm{~m} \dagger$	$115.2 \mathrm{~kb} / \mathrm{s}(2701)$	Null modem cable
		$19.2 \mathrm{~kb} / \mathrm{s}(2700,2750)$	Keithley Model 7009-5
GPIB	2 m	$1 \mathrm{MB} / \mathrm{s}$	Standard GPIB cable Keithley Model 7007-*
Ethernet	Hardwired: 100 m Wireless: $>16 \mathrm{~km}$	$100 \mathrm{Mb} / \mathrm{s}$	RJ-45 crossover cable

\dagger RS-232 maximum distance is heavily dependent on the baud rate setting. Very slow baud rates can be operated at distances longer than 15 m , while faster baud rates may require cables shorter than 15 m .

Single Computer to Multiple Instruments

Interface	Maximum No. of Instruments	Maximum Distance	Maximum Speed	Cable Type
GPIB	14 per controller	2 m per cable 20 m per controller	$1 \mathrm{MB} / \mathrm{s}$	Standard GPIB cable Keithley Model 7007-*
Ethernet	∞	Hardwired: 100 m per cable Wireless: $>16 \mathrm{~km}$	$100 \mathrm{Mb} / \mathrm{s}$	Standard RJ-45 straight-through cable

Multiple Computers to Multiple Instruments-Ethernet Only

Call or visit www.keithley.com for Technical Note \#2393,
"Network Primer and Programming Tutorial for the Model 2701 Ethernet-Based DMM/Data Acquisition System." This document explains the basic principles for using instruments over a network and programming methods for Ethernet.

Integra Series
 Multimeter/Switch Systems

Thermocouple Configuration Example Using

 Internal CJC

NOTE: The red lead is the LO signal on all thermocouples. This applies to U.S. standards.

Thermocouple Configuration Example Using External CJC

7708 Configuration Examples

Dual multiplexer mode example \#1

See Model 7708 specifications.
Channel 43Closed
Channel 44Open
Channel 45Closed for DMM measure

Integra Series
 Multimeter/Switch Systems

7708 Configuration Examples (continued)

Using internal DMM and external instruments

See Model 7708 specifications.
Channel 43Open
Channel 44Open
Channel 45Closed

NOTE: This configuration example can be duplicated with the 7700, 7701, 7702, 7703, 7706, 7707, and 7708 modules. See module specifications for their channel configurations.

7705 Configuration Examples

Integra Series

Multimeter/Switch Systems

7705 Configuration Examples (continued)

Variable AC line/load test connections

Source is impedance limited from mains (Safety Category I signals).

Single Pole (Single Point Ground) Switching Example
Using the 7705 for independent switching and the 7701 to bring measurement of DUT to internal DMM of 2750

Integra Series
 Multimeter/Switch Systems

7705 Configuration Examples (continued)

7705 independent switch and 7701 multiplexer example

Integra Series
 Multimeter/Switch Systems

Analog Output and Digital I/O Examples

7706 analog output
NOTE: The 7706 module has two $\pm 12 \mathrm{~V}$ analog output channels.
$\pm 12 \mathrm{~V}$

Typical digital output (no external power supply)

(16-bit resolution)
 5mA max.

Digital Output

The 7706 module has two non-isolated 8 -bit output ports that can be used for outputting digital patterns. The two ports can be combined to output a single 16-bit word or a dual 8 -bit byte. A simplified diagram of a single output bit is shown here.
The 7707 module has four non-isolated 8-bit input/output ports that can be used for outputting digital patterns. The two ports can be combined to output a 16 -bit word, or dual or quad 8 -bit bytes.

The 7707 can also be configured (in blocks of 8) as digital inputs.

Integra Series
 Multimeter/Switch Systems

Analog Output and Digital I/O Examples (continued)

Connecting the Model 7707 Digital I/O module to industry standard solid-state relays (SSRs) to switch high VA (up to 980VA).
7707 Digital I/O

CAUTION: Adequate insulation barriers must be used on PB-24SM and cable for systems with $>42 \mathrm{~V}$.

Matrix Configuration Example

The 7709 Matrix Module can connect any combination of six differential channels of instrumentation to any combination of eight differential DUT channels. The instrumentation can be the Integra system's internal DMM or external equipment (AC and DC sources, internal or external meters, oscilloscopes, etc.) This matrix configuration allows wide flexibility for complex test systems.

Integra Series
 Multimeter/Switch Systems

7701 Configuration Example

7701 32-Channel common-side
4-wire Ohms configuration example

*NOTE: Common side connections must be made carefully to eliminate all lead resistance from the 4 -wire ohms measurement. The common side bus should be a single wire or bus bar that connects the HI side of all the DUTs. DMM Input HI should be connected to one end of the common side bus and DMM Sense HI should be connected to the other end.
**NOTE: Refer to ROUTE:MULT section of the 2700, 2701, or 2750 manual for more information.

Distributed by:
www.SignalTestInc.com
1529 Santiago Ridge Way
San Diego, CA 92154 USA.
Sales@SignalTestInc.com

Integra Series
 Multimeter/Switch Systems

Integra Series

Multimeter/Switch Systems

Specifications are subject to change without notice

All Keithley trademarks and trade names are the property of Keithley Instruments, Inc. All other trademarks and trade names are the property of their respective companies.

KEITHLEY

Keithley Instruments, Inc.
Sales Offices: BELGIUM:
FINLAND:
FRANCE:
GERMANY: GREAT BRITAIN:
ITALY: NETHERLANDS: SWEDEN:

28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 1-888-KEITHLEY (534-8453) • www.keithley.com
Bergensesteenweg 709 • B-1600 Sint-Pieters-Leeuw • 02-363 0040 • Fax: 02/363 0064
Tietäjäntie 2•02130 Espoo • Phone: 09-54 750810 • Fax: 09-25 105100
3, allée des Garays • 91127 Palaiseau Cédex • 01-64 532020 • Fax: 01-60 117726
Landsberger Strasse $65 \cdot 82110$ Germering • 089/84 93 07-40 • Fax: 089/84 93 07-34
Unit 2 Commerce Park, Brunel Road • Theale • Berkshire RG7 4AB • 01189297500 • Fax: 01189297519
Viale San Gimignano, 38 • 20146 Milano • 02-48 3916 01 • Fax: 02-48 302274
Postbus 559 • 4200 AN Gorinchem • 0183-635333 • Fax: 0183-630821
c/o Regus Business Centre • Frosundaviks Allé 15, 4tr • 16970 Solna • 08-509 04600 • Fax: 08-655 2610

