60 W-30 kW

Battery String Simulator

- Flexible Database Operation
- Fully Programmable
- Completely Configurable
- Attention To Spacecraft Safety
- Eliminates the need for test flight batteries and their associated issues

208 400

ETHERNET GPIB

Product Overview

The Elgar Battery String Simulator (BSS) provides safe, reliable battery power for spacecraft testing. The broad range of features available ensures simulation capabilities for more than just two terminal power. It's the ideal solution for complete integrated system testing, not just battery elimination.

The BSS behavior is determined by a charge table, in spreadsheet format, specific for a battery topology and various battery conditions. Many charge tables can be stored on the computer hard drive for easy retrieval.

The BSS operates in two modes, static and dynamic. In the static mode, when a state-of-charge value is entered, the BSS will instantly produce the terminal voltage corresponding to that state-of-charge. Because of this programmable flexibility, time consuming discharge cycles of flight test batteries are eliminated. In the dynamic mode, once a state-of-charge start point is entered, the BSS will monitor the charge and discharge energies being impressed on the "battery" and modify the state-of-charge and terminal voltage accordingly.

Single or dual battery pack simulator versions are available with discharge currents of up to 250A and charge power of up to 10kW per battery. In addition, optional sensor simulators (including thermistor, pressure transducer, and heater load outputs) allow closed loop input to the Spacecraft Power Regulator for true battery emulation.

As with the SAS systems, each Battery Simulator System is a fully integrated, turn-key system using a Windows Graphical User Interface and hardware control software. This control is accomplished via a standard ethernet or optional GPIB interface using standard SCPI format commands.

Features And Benefits

Flexible Database Operation

A unique database engine allows the Battery Simulator to simulate various battery chemistries. The state of charge of the "battery" and the instantaneous current flow in or out of the "battery" is used to calculate the current terminal voltage of the battery. This database engine has the capability of controlling pressure transducer simulator to allow a charging system to operate in a closed loop fashion. The database feature allows the simulator to simulate common battery ailments: shorted cells, degraded charge transfer, and aging, to name a few.

Integrated Battery Sensor Simulator Packages

Integrated thermistor and pressure transducer and cell simulators allow the user to test an entire battery conditioning system closed loop. This integration of simulators allows for faster system debug and greater test flexibility.

Fully Programmable

All aspects of the battery simulation are programmable. A file management system allows different "battery" databases to be loaded and executed transparently while the system is simulating, thus allowing the user the ability to change battery conditions quickly and efficiently. A simulation can be suspended and re-started later, allowing the user to stop the charge/ discharge cycle and examine battery maintenance systems in a static environment. All system setpoints and operational points are available to the user either locally or remotely, eliminating the need for external monitoring equipment.

Distributed By: Signal Test, Inc 1529 Santiago Ridge Way San Diego, CA 92154 Tel. 1-619-575-1577 USA www.SignalTestInc.com Sales@SignalTestInc.com

BSS - Battery Simulation System

Attention To Spacecraft Safety

Several safety systems are employed in the battery simulator to ensure proper system operation. Overcurrent trip or foldback points are user settable locally or remotely. Programmable overvoltage protection is also provided.

Wide Range Of Power

Charge/discharge power levels ranging from less than a kilowatt to several kilowatts, are available.

Test System Safety

The BSS is used in place of test flight batteries. There is no need to charge and discharge test batteries, and chance a shorting of the battery.

Test Process Speed

Changing from one state - of - charge to another using flight batteries and be a time consuming process. The Elgar BSS is simple, fast and accurate and can increase test throughput tremendously.

SYSTEM SPECIFICATIONS					
Specification	Value	Test Conditions	Notes / Definitions		
Operating Modes	Static Battery Battery Simulation Power Supply				
Battery Simulation Model	Any battery can be simulated using an Excel database. Terminal voltage is a function of State of Charge (SOC) vs. Current (charge or discharge)				
Remote Control	Ethernet Standard GPIB Optional				
OVP chassis input impedance	20Megohms		Optional Chassis		
OVP chassis response time	20μs		Optional Chassis		
OVP Chassis filter	3dB roll off at 85KHz		Optional Chassis		
Ambient Operating Temperature	0 – 38 °C				
Operating Humidity	20% to 80% non-condensing				
Operating Altitude	Up to 6,000 feet above sea level				
Non-operating Environment	Temp: -25 – 65 °C Altitude: 50000 ft Humidity: 95% non-condensing				
AC Input	208VAC L-L ±10%, 3PH 5 wire Wye, 0/60Hz or 380–400VAC L-L ±10%, 3PH 5 wire Wye, 50/60Hz				

BSS - Specifications

60 W-30 kW

BATTERY SPECIFICATIONS				
Specification	Value	Test Conditions	Notes / Definitions	
Terminal Voltage (TV) Range	Up to 200 V			
Discharge Current Limit	Up to 250 A			
Charge Current Limit	Up to 10kW			
Output Voltage Accuracy	± 0.1% of max Terminal Voltage	Tamb = 25 ± 5 °C		
Terminal Voltage Resolution	± 0.01% of max Terminal Voltage	Tamb = 25 ± 5 °C		
Voltage Readback Accuracy	± 0.2% of max Terminal Voltage	Tamb = 25 ± 5 °C		
Voltage Readback Resolution	± 0.004% of max Terminal Voltage	Tamb = 25 ± 5 °C		
Current Readback Accuracy	± 0.5% of max Discharge current	Tamb = 25 ± 5 °C		
Current Readback Resolution	± 0.004% of max Discharge Current	Tamb = 25 ± 5 °C		
Output Voltage Ripple	TV < 100V, 20.0 mV rms TV >100V, 25.0 mV rms	20 Hz – 300 kHz		
Output Voltage Noise	TV < 60V, 75.0 mV p-p 60V < TV < 100V, 100.0 mV p-p TV > 100V, 150.0 mV p-p	20 Hz – 20 MHz		
Over Voltage Accuracy	± 0.2% of max Terminal Voltage	Tamb = 25 ± 5 °C		
Over Voltage Resolution	± 0.007% of max Terminal Voltage	Tamb = 25 ± 5 °C		
Over Voltage Range	15V – 110% TVmax			
Foldback Current Accuracy	± 0.2% of max Discharge current	Tamb = 25 ± 5 °C		
Shutdown Over Current Accuracy	± 1.0% of max Discharge Current	Tamb = 25 ± 5 °C		
Over Current Resolution	± 0.007% of max Discharge Current	Tamb = 25 ± 5 °C		
Over Current Range	2A – Max Discharge I 2A – Max Charge I			
Over Voltage Protection Circuitry Timing	≤ 100 µs			
Over Current Protection Circuitry Timing	≤ 100 ms			
Transient Response	\leq 20 ms, Recovery within $\pm 1\%$ of TVmax or $\pm 1V$ whichever is greater. Measured at the output connector.	50% load step charge and discharge current step across 8500µF capacitor.		
Transient Over/Undershoot	10% of TVmax or 10V, whichever is greater.	50% load step charge and discharge current step across 8500µF capacitor.		
Accumulator Accuracy	±2.5% SOC	Constant Current charge or discharge \ resulting in a 50% change in state of charge over 30 minutes.		
Output Capacitance	Consult Factory. Dependent on terminal voltage and maximum discharge current			
Minimum Terminal Voltage	5.0V when using 2KW electronic loads 15.0V when using 5kW electronic loads			
Output Isolation	≥ 1Megohm between channels, and from output to chassis ground.			
Recommended Calibration Interval	1 Year			

SENSOR SIMULATOR OPTIONS

See "Telemetry Options for Solar Array and Battery Simulators" document.

Notes	
Notes	
	4
	_
	_
	_
	_
	_
	\neg
	\dashv
	\dashv
	-
	-
	\dashv
	-
	\dashv
	-
	\dashv
	_
	\dashv
	_
	\dashv
	_
	\dashv
	_
	\neg
	_
	\neg
	\dashv
	\perp
	\exists
	\dashv
	_